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The class of quantum languagesQ(6) over an alphabet6 is the class of languages
accepted by quantum automata. We study properties ofQ(6) and compareQ(6) with
the class of regular languagesR(6). It is shown thatQ(6) is closed under union,
intersection, and reversal but is not closed under complementation, concatenation, or
Kleene star. It is also shown thatQ(6) andR(6) are incomparable. Finally, we prove
thatL ∈ Q(6) if and only if L admits a transition amplitude function satisfying a certain
property and a similar characterization is given forR(6).
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1. INTRODUCTION

Although theoretical quantum computers were first studied in the 1980s
(Benioff, 1982a,b; Deutsch, 1989; Feynman, 1982, 1986), it has only been recently
that they have been considered with intense interest. One reason for this renewed
interest is that quantum algorithms have been discovered, which show that quantum
computers are capable of executing programs such as integer factorization and dis-
crete logarithms exponentially faster than classical computers (Deutsch and Jozsa,
1992; Grover, 1996; Shor, 1997; Simon, 1997; Williams, 1999). Another reason is
that prototypical quantum computers employing nuclear magnetic resonance or
nonlinear optics technologies have actually been constructed (Williams, 1999).

A fundamental, yet particularly simple, type of quantum computer is a quan-
tum automaton. Such machines have an input but no output and the languages that
they accept are called quantum languages (Gudder, 1999, 2000, 2000a; Kondacs
and Watrous, 1997; Moore and Crutchfield, in press). This paper discusses prop-
erties of quantum languages and compares them with the classical languages ac-
cepted by deterministic automata. The main classical languages are the regular
languages and their properties are well-known. As we shall see, the quantum lan-
guages share some of the properties of regular languages and do not share others.
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We denote the class of regular languages over an alphabet6 by R(6) and
the quantum languages byQ(6). It is well known thatR(6) is closed under the
set-theoretic operations of union, intersection, and complementation. Moreover,
R(6) is closed under the monoid operations of concatenation, Kleene star, and
reversal. The set-theoretic and monoid closure properties ofQ(6) will be some of
the main concerns of this paper. There are various characterizations ofR(6) and
our other main concern will be to develop a characterization ofQ(6).

For the benefit of readers who are not familiar with classical automata and
regular languages, we present a brief review in Sections 2 and 3. Section 3 also
gives a reformulation of the concept of a deterministic automaton that should aid
the understanding of the operation of a quantum automaton. Section 4 introduces
a class of languages Rev(6) called the reversible languages. These languages are
common toR(6) andQ(6) and they are useful for comparing their properties. The
languages Rev(6) are precisely those that are accepted by reversible deterministic
automata. We show that Rev(6) is closed under union, intersection, complemen-
tation, and reversal but is not closed under concatenation or Kleene star.

Section 5 first describes the operation ofq-automata and the languagesQ(6)
that they accept. We show thatQ(6) contains Rev(6) and the set of finite lan-
guages. It is demonstrated thatQ(6) is closed under union, intersection, and
reversal but is not closed under complementation, concatenation, or Kleene star.
Moreover, we show thatR(6) and Q(6) are incomparable; that is, neither is
contained in the other. Finally, we briefly mention another class of quantum lan-
guages denoted byQη(6). Although it is known thatR(6), Q(6), andQη(6) are
mutually incomparable, most of the properties ofQη(6) are still unknown.

The paper concludes with a characterization ofQ(6) in Section 6. This result
shows thatL ∈ Q(6) if and only if L admits a transition amplitude function that
satisfies a certain condition. For comparison purposes, we also present similar
characterizations forR(6) and Rev(6). Some of the material of this paper is a
continuation of our work in Gudder (2000), and we refer to this work for needed
results.

2. FORMAL LANGUAGES

An alphabet is a finite nonempty set ofsymbols. A string over an alphabet6
is a finite sequence of symbols from6. Instead of writing strings as (a1, a2, . . . , an),
we simply juxtapose the symbolsa1a2 · · ·an. We use the notationaa · · ·a = an

when there aren a’s. A string may have no symbols in which case it is theempty
string and is denoted bye. The set of all strings includinge over6 is denoted
by6∗. Then6∗ becomes a monoid in which the product is juxtaposition and the
identity ise. The length of a stringw is the number of symbols inw and is denoted
by |w|. If w is a string, we writew(i ) for the symbol in thei th position fori ≤ |w|.
A string x is aprefix (suffix) of a stringw if w = xy (w = yx) for somey ∈ 6∗.
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Any set of strings over6, that is any subset of6∗, is called alanguageover6.
For example,6∗, ∅, and6 are languages over6. Since languages over6 are sets,
they can be combined by the set operations of union, intersection, and difference.
We can also use the fact that6∗ is a monoid to define other operations on languages.
If L1, L2 ⊆ 6∗, theirconcatenationis the languageL = L1L2 given by

L = {w ∈ 6∗ : w = xy, x ∈ L1, y ∈ L2}
TheKleene starof a languageL, denoted byL∗, is the set of all strings obtained
by concatenating zero or more strings fromL. By convention, the concatenation
of zero strings ise and the concatenation of one string is the string itself. Thus,

L∗ = {w ∈ 6∗ : w = w1w2 · · ·wn, n ≥ 0, w1, . . . , wn ∈ L}
For example,6∗ is the Kleene star of the language6 and∅∗ = {e}. Notice that
if L 6= ∅, thenL∗ is infinite. If w = w1w2 · · ·wn ∈ 6∗, thereversal wR of w is
defined aswR = wn · · ·w2w1. It is clear thatwRR= w and that (xy)R = yRxR for
everyw, x, y ∈ 6∗. The reversal L R of a languageL is defined asL R = {wR :
w ∈ L}.

In this paper we shall discuss the properties of various classes of languages.
For a simple example, letF(6) be the class of all finite languages over6. It is
clear thatF(6) is closed under union, intersection, and difference. However, it is
not closed under complementation and soF(6) is not a Boolean algebra. It is also
evident thatF(6) is closed under concatenation and reversal but is not closed under
Kleene star. We next discuss a less trivial and very important class of languages
called the regular languages.

Theregular languagesover6 are the smallest collectionR(6) of languages
over6 that contain{{σ } : σ ∈ 6} ∪ {∅} and is closed under union, concatenation,
and Kleene star. Thus,R(6) contains∅ and the singleton strings{σ }, σ ∈ 6; the
union, concatenation, and Kleene star of languages inR(6) are again inR(6);
andR(6) is the smallest set of languages over6 with these properties. In the next
section we shall see thatR(6) is also closed under intersection and differences.
In particular, if L ∈ R(6), then6∗QL ∈ R(6) so R(6) is a Boolean algebra.
Moreover, in the next section we shall see thatR(6) is closed under reversal and
shall give the connection between regular languages and deterministic automata.
Finally, it is clear thatF(6) ⊆ R(6).

We now discuss a useful characterization ofR(6). Let L ⊆ 6∗ be a language
and letx, y ∈ 6∗. Then we writex ≈L y if for every z ∈ 6∗ we havexz∈ L if
and only if yz∈ L. Notice that≈L is an equivalence relation on6∗. We use [x]L

to denote the equivalence class ofx with respect to≈L and write

6∗/L = {[x]L : x ∈ 6∗}
The following result is called the Myhill-Nerode theorem (Lewis and
Papadimitriou, 1998).
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Theorem 2.1. L ∈ R(6) if and only if6∗/L is finite.

We next present a useful method for showing that a language is not regular
(Lewis and Papadimitriou, 1998).

Theorem 2.2. Let L be a regular language. Then there exists n∈ N such that any
string w ∈ L with |w| ≥ n can be written as w= xyz such that y6= e, |xy| ≤ n
and xyi z ∈ L for every i≥ 0.

This last result is called apumping theorembecause we can pump in (insert)
y any number of times without effecting the membership ofw in L. A simple
exercise employing Theorem 2.2 shows that if6 = {a, b}andL1 = {ai bi : i ≥ 0},
thenL1 6∈ R(6). In a similar way

L2 = {w ∈ 6∗ : w has an equal number ofa’s andb’s} 6∈ R(6)

AlthoughL1, L2 6∈ R(6) they belong to a larger class called the context-free lan-
guages. Although we shall not discuss this class in detail, we will mention that the
context-free languages are those that can be constructed from the rules of a formal
grammar. Two examples of languages that are not context-free over6 = {a, b, c}
are{ai bi ci : i ≥ 0} and

L3 = {w ∈ 6∗ : w has the same number ofa’s, b’s, andc’s}

3. CLASSICAL AUTOMATA AND LANGUAGES

We motivate the precise definition of a deterministic automaton by first de-
scribing how such devices operate. Strings are fed into the machine by means of
an input tape which is divided into cells with one symbol in each cell. The main
part of the machine is thefinite control which at a specified moment is in one
of a finite number of internalstates. The finite control can sense what symbol is
written in any cell of the tape by means of a movablereading head. Initially the
reading head is placed at the leftmost cell of the tape and the control is set in a
designatedinitial state. At regular intervals the automaton reads one symbol from
the input tape and then enters a new state that depends only on the current state and
the symbol just read. After reading an input symbol, the reading head moves one
cell to the right on the input tape so that on the next move it will read the symbol
in the next cell. This process is continued until the reading head reaches the end
of the input string. If the control ends up in one of a set offinal states, the input
is considered to beaccepted. The language accepted by the machine is the set of
all strings it accepts. This is an example of a language recognizer.

We now present the precise definition. Adeterministic automaton (abbre-
viated DA) is a quintupleM = (S,6, δ, s0, F) whereS is a finite set of states,
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6 is an alphabet,s0 ∈ S is theinitial state, F ⊆ S is the set offinal states, and
δ : S×6→ S is thetransition function . If M is in states ∈ S and the symbol
read from the input tape isa ∈ 6, thenδ(s, a) ∈ S is the uniquely determined
state to whichM passes. It is because of the uniqueness ofδ(s, a) thatM is called
deterministic. We call (s, a, s′) ∈ S×6 × S a transition if δ(s, a) = s′. For ex-
ample, ifM is fed the stringaba, thenM starts in states0 and proceeds along the
sequence of statess0, δ(s0, a), δ(δ(s0, a), b), δ(δ(δ(s0, a), b), a). A configuration
of M is an element ofS×6∗. A configuration (s, w) represents the current states
of M and the unread partw of the string being processed. Acomputation of M on
an input string is the sequence of configurations ofM that represent the status of
M at successive moments. Thus, the computation for the input stringababecomes
(s0, aba), (δ(s0, a), ba), (δ(δ(s0, a), b), a), (δ(δ(δ(s0, a), b), a), e).

The binary relatioǹ M holds between two configurations ofM if and only
if M can pass from one to the other as a result of a single move. Thus, (s, w) `M

(s′, w′) if and only if w = aw′ for somea ∈ 6 andδ(s, a) = s′. We then say that
(s, w) yields(s′, w′) in one step. We denote the reflexive, transitive closure of`M

by `∗M . Then (s, w) `∗M (s′, w′) is read (s, w) yields (s′, w′) (after some number,
possibly zero, of steps). A stringw ∈ 6∗ isacceptedby M if there exists ans ∈ F
such that (s0, w) `∗M (s, e). We can extendδ toS×6∗ by definingδ(s, w) = s′ ∈ S
wheres′ is the unique state that satisfies (s, w) 7→∗M (s′, e). Thenw is accepted by
M if and only if δ(s0, w) ∈ F . The language acceptedby M , denotedL(M), is
the set of all strings accepted byM . The following theorem is the most important
result in the theory of deterministic automata (Lewis and Papadimitriou, 1998).

Theorem 3.1. A language L is accepted by a DA if and only if L is regular.

Theorem 3.1 is useful in many ways. For example, a simple application of
Theorem 3.1 shows thatR(6) is closed under complementation and henceR(6)
is a Boolean algebra. Also, Theorem 3.1 can be employed to show thatR(6) is
closed under reversal. Applying Theorem 2.1 one can construct the minimal DA,
denoted byML , that acceptsL ∈ R(6). The DA ML is minimal in the sense that
ML has the least number of states. We can defineML by

ML = (6∗/L ,6, δL , [e]L , {[x]L : x ∈ L})
whereδL ([x]L , a) = [xa]L .

Another type of classical automaton is the nondeterministic automaton (NA).
For a NA the next state for a given current state and input symbol may not be unique.
Although a DA is a special case of a NA, it can be shown that the set of languages
accepted by NA is still the set of regular languages (Lewis and Papadimitriou,
1998). Thus, NA are no more powerful than DA.

There is a result similar to Theorem 3.1 for context-free languages. This
theorem says thatL is context-free if and only ifL is accepted by a push-down
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automaton. Roughly speaking, a push-down automaton is like a NA except it
possesses an unlimited memory stack.

It is convenient to describe the operation of a DA in terms of certain operators
on a Hilbert space. This is unnecessary for a DA but it will be essential when
we discuss quantum automata. LetM = (S,6, δ, s0, F) be a DA and suppose
the cardinality|S| = n. Let H be ann-dimensional complex Hilbert space and
let s 7→ ŝ be a bijection fromS to an orthonormal basiŝS of H . We call Ŝ a
computational basisfor M and we callF̂ = span{ ŝ : s ∈ F} thefinal subspace
for M . For a ∈ 6 define the linear operatorU (a) : H → H by U (a)ŝ= t̂ if
δ(s, a) = t and extendU (a) to H by linearity. Relative toŜ, U (a) is represented
by a 0–1 matrix in which each column contains precisely one 1. Of course, there
may be more than one 1 in a row. We call such a matrix a 0–1stochastic matrix.
If w = a1a2 · · ·ak is a string in6∗, we define

U (w) = U (ak) · · ·U (a2)U (a1)

if w 6= e and otherwiseU (e) = I . It is clear thatU (w) is again a 0–1 stochastic
matrix. We callU (w) theevolution operator for w because it describes the evo-
lution of M when fed the stringw. We then have thatw ∈ L(M) if and only if
U (w)ŝ0 ∈ F̂ . We say thatM is reversible if U (a) is invertible for everya ∈ 6.
Equivalently,M is reversible if and only if for everya ∈ 6 the mapδ(·, a) : S→ S
is injective (and hence, bijective). A DA is reversible precisely when it does not
dissipate heat and this is an important factor in the design of modern computers.
The proof of the following lemma is clear.

Lemma 3.2. A DA is reversible if and only if U(a) is unitary for every a∈ 6.

We now consider probabilistic automata (PA) and, as we shall see, this type
of classical automata is similar to quantum automata. A PA is a quintupleM =
(S,6, δ, s0, F) whereS,6, s0, F are the same as for a DA andδ : S×6 × S→
[0, 1] is a transition probability function satisfying∑

t∈S

δ(s, a, t) = 1 (3.1)

for every s ∈ S, a ∈ 6. We interpretδ(s, a, t) as the probability thatM enters
statet after scanninga in its current states. Then Eq. (3.1) says thatM must enter
some state with probability 1. As with a DA, the action ofM can be conveniently
described by an evolution operator. LetŜ be a computational basis forM in the
Hilbert spaceH . Fora ∈ 6, define the linear operatorU (a) on H by

U (a)ŝ=
∑
t∈S

δ(s, a, t)t̂ (3.2)

and extend by linearity. ThenU (a) is represented by a matrix whose entries are
in [0, 1] and whose column sums are 1. Thus, we may considerU (a) to be a
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stochastic matrix. Forw ∈ 6∗ we define the operatorU (w) : H → H as before
and callU (w) theevolution operator for w. Notice from Eq. (3.2) thatU (a)ŝ is a
convex combination of elements ofŜ. We call such vectorsprobability vectors.
It follows from the next well-known lemma thatU (w) is a stochastic matrix and
thus the evolution ofM underw gives a Markov chain.

Lemma 3.3. (a)If A and B are stochastic matrices, then AB is a stochastic matrix.
(b) U (w)ψ is a probability vector for any probability vectorψ .

Of course, a DA is a special case of a PA in which the transition probability
function has values 0 and 1. Now the set of stochastic matrices form a convex set
so in a sense we can consider the evolution operators of PA as forming a convex
set. The next result shows that the evolution operators of DA are the extreme points
of this convex set.

Lemma 3.4. If S is the set of stochastic n× n matrices, then the set of 0–1
stochastic n× n matrices is the set of extreme points ofS.

We say that a PA isreversible if U (a)−1 exists and is a stochastic matrix for
everya ∈ 6. The next result shows that a PA is reversible if and only if it is a
reversible DA (Gudder, 2000).

Lemma 3.5. If A and B are stochastic n× n matrices with AB= I , then A and
B are 0–1 unitary matrices.

Putting the previous results together, we have the following theorem.

Theorem 3.6. If M is a PA then the following statements are equivalent.(a) M
is reversible.(b) M is a reversible DA.(c) The evolution operators U(a) for M are
unitary.

Let M = (S,6, δ, s0, F) be a PA and letw ∈ 6∗. Lemma 3.3 shows that

U (w)ŝ0 =
∑
t∈S

λw
t t̂

is a probability vector so that
∑

t∈Sλ
w
t = 1,λw

t ≥ 0. We write

p(F | w) =
∑
t∈F

λw
t

and interpretp(F | w) as the probability thatM ends up in a final state when
fed the stringw. We say thatw is accepted with probability greater than η if
p(F | w) > η. The set of all strings accepted byM with probability greater thanη is
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theη-languagefor M . It can be shown that every regular language is anη-language
for some PA for every 0≤ η < 1 (Paz, 1971). Moreover, there areη-languages for
0 < η < 1 that are not regular (Paz, 1971). This shows that PA are more powerful
than DA. However, unlike the quantum automata that will be considered next, PA
are theoretical machines that cannot be efficiently implemented in general (Dwork
and Stockmeyer, 1990).

4. REVERSIBLE LANGUAGES

A regular language over6 is reversible if for every x ∈ 6∗ there exists a
y ∈ 6∗ such thatuv ∈ L if and only if uxyv∈ L. In a certain sense any stringx
has acancelingstring y relative toL. We denote the set of reversible languages
over6 by Rev(6).

Lemma 4.1. If ∅ 6= L ∈ Rev(6) then every x∈ 6∗ is a prefix of a string in L.

Proof: Letz ∈ L and lety be a canceling string forx relative toL. Thenxyz∈ L
becausez ∈ L. ¤

It follows from Lemma 4.1 that every nonemptyL ∈ Rev(6) is infinite.
Thus,F(6) ∩ Rev(6) = {∅} and sinceF(6) ⊆ R(6) we conclude that Rev(6)
is properly contained inR(6). We now prove a result analogous to Theorem 3.1
which says that a languageL is accepted by a reversible DA if and only ifL ∈
Rev(6).

Lemma 4.2. (a) If L is accepted by a reversible DA then for any a∈ 6 there
exists n(a) ∈ N such that for every x, y ∈ 6∗, xan(a)y ∈ L if and only if xy∈ L.
(b) If L is accepted by a reversible DA then for every x, y, z ∈ 6∗, xz≈L yz
implies that x≈L y. (c) If L ∈ R(6) then L is accepted by a reversible DA if and
only if ML is reversible.

Proof: (a) Let M = (S,6, δ, s0, F) be a reversible DA acceptingL. Since for
fixed a ∈ 6, the maps 7→ δ(s, a) is a bijection onS, it has finite order in the
permutation group onS. Let n(a) be the order of this permutation. Then

δ
(
s0, xan(a)y

) = δ(s0, xy)

for everyx, y ∈ 6∗ so the result follows. (b) It is enough to show thatxa≈L ya
implies thatx ≈L y for everya ∈ 6 andx, y ∈ 6∗. Assume thatxa≈L ya and
that z ∈ 6∗. By Part (a) we havexz∈ L if and only if xaan(a)−1z ∈ L. Since
xa≈L ya, the latter condition is equivalent toyaan(a)−1z ∈ L which by Part (a)
is equivalent toyz∈ L Hence,x ≈L y. (c) If ML is reversible, then clearlyL is
acepted by a reversible DA. Conversely, supposeL is accepted by a reversible DA.
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To show thatML is reversible suppose thatδL ([x]L , a) = δL ([y]L , a) for some
x, y ∈ 6∗, a ∈ 6. But then [xa]L = [ya]L so thatxa≈L ya. Applying Part (b)
we havex ≈L y and hence, [x]L = [y]L . ¤

Theorem 4.3. If L ∈ R(6), then the following statements are equivalent.

(a) L is accepted by a reversible DA.
(b) ML is reversible.
(c) For every a∈ 6 there exists n(a) ∈ N such that for every x, y ∈ 6∗,

xan(a)y ∈ L if and only if xy∈ L.
(d) For every x, y, z ∈ 6∗, xz≈L yz implies that x≈L y.
(e) L ∈ Rev(6).

Proof: That (a)–(d) are equivalent follows from Lemma 4.2 and its proof. Now
(c) implies (e) because ifx = a1a2 · · ·ak then we can take a canceling string forx
relative toL to be

y = an(ak)−1
k · · ·an(a2)−1

2 an(a1)−1
1

We now show that (e) implies (d). Suppose thatL ∈ Rev(6) and thatxz≈L yzfor
somex, y, z ∈ 6∗. Let v be a canceling string forz relative toL. Sincexz≈L yz
we havexzvw∈ L if and only if yzvw∈ L for everyw ∈ 6∗. It follows that
xw ∈ L if and only if yw ∈ L for everyw ∈ 6∗. Hence,x ≈L y. ¤

Since Rev(6) is properly contained inR(6), we conclude from Theorem 4.3
that DA are more powerful than reversible DA. For example, if∅ 6= L ∈ F(6),
thenL is accepted by a DA but not by a reversible DA.

Corollary 4.4. (a) If L ∈ Rev(6), then LR ∈ Rev(6). (b) If ∅ 6= L ∈ Rev(6),
then every x∈ 6∗ is a suffix of a string in L.

Proof: (a) If L ∈ Rev(6), thenL ∈ R(6) so L R ∈ R(6). For a ∈ 6 there ex-
istsn(a) ∈ N satisfying Theorem 4.3(c). Nowxy ∈ L R if and only if yRxR ∈ L.
By Theorem 4.3(c) this latter condition is equivalent toyRan(a)xR ∈ L which is
equivalent toxan(a)y ∈ L R. The result follows from Theorem 4.3(c). (b) Since
L R ∈ Rev(6), by Lemma 4.1 there existsy ∈ 6∗ such thatxRy ∈ L R. But then
yRx ∈ L. ¤

Corollary 4.4 shows that Rev(6) is closed under reversal. It is shown in
Gudder (2000) that Rev(6) is closed under union, intersection, and complemen-
tation. We now investigate whether Rev(6) is closed under concatenation and
Kleene star.



P1: GFU/GDX/GVG/GCY/GCO P2: LOV/FNV QC: FZN

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370719 April 9, 2002 8:54 Style file version Nov. 19th, 1999

578 Gudder and Ball

Example 4.1. Let6 = {a, b} and letL1 ⊆ 6∗ be the language given by

L1 = {w ∈ 6∗ : w has an odd number ofa’s}

We will now show thatL1 ∈ Rev(6). We accomplish this by producing a re-
versible DAM1 that acceptsL1. This DA is given byM1 = (S,6, δ, s0, F) where
S= {s0, s1}, F = {s1} and δ(s0, a) = s1, δ(s0, b) = s0, δ(s1, a) = s0, δ(s1, b) =
s1. Another way to show thatL1 ∈ Rev(6) is to employ Theorem 4.3(c). First,L1 ∈
R(6) becauseL1 = b∗ab∗(b∗ab∗ab∗)∗. Let n(a) = 2, n(b) = 1. Sincexa2y ∈ L
if and only if xy ∈ L and xby∈ L if and only if xy ∈ L we conclude that
L1 ∈ Rev(6).

An argument similar to that in Example 4.1 shows thatL2 ∈ Rev(6) where

L2 = {w ∈ 6∗ : |w| to even}
In this casen(a) = n(b) = 2. Similarly, L3 ∈ Rev(6) where

L3 = {w ∈ 6∗ : w has an even number ofa’s}
The next result shows that, in general, Rev(6) is not closed under concatenation
and Kleene star.

Theorem 4.5. If L 1 is the language of Example 4.1, then

(a) L1L1 6∈ Rev(6), (b) L∗1 6∈ Rev(6).

Proof: (a) Suppose thatL1L1 ∈ Rev(6). Applying Theorem 4.3(c), there exists
n(a) ∈ N such thatxan(a)y ∈ L1L1 if and only if xy ∈ L1L1. Now aa ∈ L1L1 so
aan(a)a ∈ L1L1. Now n(a) must be even becauseaan(a)a must contain an even
number ofa’s. But thenban(a)b ∈ L1L1 so thatbb∈ L1L1 and this is a contradic-
tion. (b) It is easy to check that

L∗1 = {w ∈ 6∗ : w = e or w(i ) = a for somei ∈ N}
= {e} ∪6∗a6∗

SupposeL∗1 ∈ Rev(6). Sinceban(a)b ∈ L∗1, by Theorem 4.3(c) we havebb∈ L∗1.
But this is a contradiction. ¤

5. QUANTUM LANGUAGES

In the sequel,H will denote a finite-dimensional complex Hilbert space
with unit sphereĤ . We denote the set of unitary operators onH by U(H ).
A q-automaton is a quintupleM = (H,6, U, s0, F) where6 is an alphabet,
U : 6→ U(H ), s0 ∈ Ĥ , andF is a subspace ofH . We extendU to a map from
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6∗ into U(H ) as follows. Ifw = a1a2 · · ·an ∈ 6∗ we define

U (w) = U (an) · · ·U (a2)U (a1)

andU (e) = I . Of course, this makes sense because the product of unitary operators
is unitary.

We interpretĤ as the state space forM, s0 ∈ Ĥ is thestart state (or initial
state) of M andF is thefinal subspacefor M . We callU (w) theevolution opera-
tor of M for w ∈ 6∗ and interpretU (w)s0 as the state in whichM finds itself after
being fed the stringw. Theprobability that M reachess ∈ Ĥ when fedw ∈ 6∗ is

pM (s | w) = |〈U (w)s0, s〉|2

Denoting the orthogonal projection ontoF by P(F) the probability that M
reachesthe final subspaceF when fedw ∈ 6∗ is given by

pM (F | w) = ‖P(F)U (w)s0‖2

We say thatw ∈ 6∗ is acceptedby M if pM (F | w) = 1 and define

L(M) = {w ∈ 6∗ : pM (F | w) = 1}
A languageL is aquantum languageif L = L(M) for someq-automatonM . We
denote the set of all quantum languages over6 by Q(6).

It is shown in Gudder (2000) that ifL1, L2 ∈ Q(6), thenL1 ∪ L2 ∈ Q(6)
and L1 ∩ L2 ∈ Q(6) so thatQ(6) is closed under union and intersection. The
next result shows thatQ(6) is closed under reversal.

Theorem 5.1. If L ∈ Q(6), then LR ∈ Q(6).

Proof: Let L = L(M) for aq-automatonM = (H,6, U, s0, F) whereF 6= {0}.
Let dimF = n and letP be the set of all projections onH of dimensionn. Let H ′

be the set of all complex linear combinations of elements ofP. ThenH ′ is a finite-
dimensional linear space becauseH ′ is a subspace of the finite-dimensional linear
space of all operators onH . Define an inner product onH ′ by 〈A, B〉1 = tr(AB∗).
For everya ∈ 6 defineU ′(a) : H ′ → H ′ byU ′(a)A = U (a)∗AU(a). ThenU ′(a)
is unitary because

‖U ′(a)A‖21 = tr(U (a)∗AU(a)U (a)∗A∗U (a)) = tr(U (a)∗AA∗U (a))

= tr(AA∗) = ‖A‖21
We extendU ′ to a map from6∗ into U(H ′) as before. Note thatU ′(wR)A =
U (w)∗AU(w). Indeed, ifw = a1a2 · · ·ak we have

U ′(wR)A = U ′(a1) · · ·U ′(ak) A = U (a1)∗ · · ·U (ak)∗AU(ak) · · ·U (a1)

= U (w)∗AU(w)
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Form theq-automatonM ′ = (H ′,6, U ′, s′0, F ′) wheres′0 = P(F)/
√

n and

F ′ = span{P ∈ P : Ps0 = s0}
Suppose thatw ∈ L. We then haveP(F)U (w)s0 = U (w)s0. Now

U ′(wR)s′0 =
1√
n

U (w)∗P(F)U (w)

and U (w)∗P(F)U (w) ∈ P with U (w)∗P(F)U (w)s0 = s0. Hence,U ′(wR)s′0 ∈
F ′ so thatwR ∈ L(M ′). Conversely, suppose thatw ∈ L(M ′). ThenU ′(w)s′0 =
1/
√

nP whereP ∈ P with Ps0 = s0. Since
√

nU ′(w)s′0 = U (wR)∗P(F)U (wR)

we have

U (wR)∗P(F)U (wR)s0 = s0

Hence,P(F)U (wR)s0 = U (wR)s0 so thatwR ∈ L. Thus,w = (wR)R wherewR ∈
L so thatL(M ′) = L R. ¤

We now compareQ(6) with the classical languagesR(6) and Rev(6) ⊆
R(6). First, if L ∈ Rev(6) then by Theorem 4.3,L is accepted by a reversible DA
M . By Lemma 3.2 the corresponding operatorsU (a) are unitary for everya ∈ 6.
It follows that M can be considered to be aq-automaton whose final subspace
is the span ofF . Hence,L ∈ Q(6) and we conclude that Rev(6) ⊆ Q(6). To
compareQ(6) and R(6), we first give some examples of quantum languages.
Our initial example shows that singleton strings are quantum languages.

Example 5.1. If 6 = {a1, . . . , an}, then{ai } ∈ Q(6), i = 1, . . . , n.

Proof: Form theq-automatonM = (H,6, U, s0, F) with H = C2n

s0 = (2n)−1/2(1, 1,. . . , 1)

s1 = U (a1)s0, F = span{s1}, θ =
√

2π and

U (a1) =


cosθ −sinθ 0 · · · 0
sinθ cosθ 0 · · · 0

0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1


...
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U (an) =


1 0 0 · · · 0
0 1 0 · · · 0

...

0 0 0 · · · cosθ −sinθ
0 0 0 · · · sinθ cosθ


It is easy to check thatL(M) = {a1} so that{a1} ∈ Q(6). A similar construction
shows that{ai } ∈ Q(6), i = 1, . . . , n. ¤

If we takeF = span{s0} in Example 5.1, we conclude that{e} ∈ Q(6). The
next example shows that a string of length two is a quantum language.

Example 5.2. If 6 = {a, b}, then{ab} ∈ Q(6).

Proof: Form the q-automaton M = (H,6, U, s0, F) with H = C3, s0 =
(1, 0, 0),s1 = U (b)U (a)s0, F = span{s1}, θ =

√
2π and

U (a) =
cosθ −sinθ 0

sinθ cosθ 0
0 0 1


U (b) =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ


It is easy to check thatL(M) = {ab}. ¤

A straightforward extension of Example 5.2 shows that any string is a quantum
language. SinceQ(6) is closed under union, we conclude thatF(6) ⊆ Q(6). It
is shown in Gudder (2000) that the nonregular languagesL2 andL3 of Section 2
are quantum languages so thatQ(6) 6⊆ R(6).

The proof of the following lemma appears in Moore and Crutchfield (in press).
We now give a different proof.

Lemma 5.2. If U ∈ U(H ) and ε > 0 then there exists k∈ N such that‖Uk −
I ‖ < ε.

Proof: Since H is finite dimensional, the unit sphereB(H )∧ in the set of
(bounded) operatorsB(H ) on H is compact and{U j : j ∈ N} ⊆ B(H )∧. Hence,
there exists a subsequenceU j ′ that converges inB(H )∧. SinceU j ′ is Cauchy,
there existj , k ∈ N, j 6= k such that‖U j −Uk‖ < ε. Now for everyU ∈ U(H )
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we have‖U A‖ = ‖A‖ for everyA ∈ B(H ). Indeed,

‖U A‖ = sup
‖ψ‖=1

‖U Aψ‖ = sup
‖ψ‖=1
〈U Aψ, U Aψ〉1/2

= sup
‖ψ‖=1
〈Aψ, Aψ〉1/2 = sup

‖ψ‖=1
‖Aψ‖ = ‖A‖

Thus, if j < k we have

‖Uk− j − I ‖ = ‖U j (Uk− j − I )‖ = ‖Uk −U j ‖ < ε ¤

Corollary 5.3. Let M = (H,6, U, s0, F) be a q-automaton. For anyε > 0 and
w ∈ 6∗ there exists k∈ N such that

‖U (uwkv)−U (uv)‖ < ε (5.1)

for every u, v ∈ 6∗.

Proof: Applying Lemma 5.2 there existsk ∈ N such that‖U (w)k − I ‖ < ε.
Hence,

‖U (uwkv)−U (uv)‖ = ‖U (v)U (w)kU (u)−U (v)U (u)‖
= ‖U (v)[U (w)k − I ]U (u)‖
≤ ‖U (w)k − I ‖ < ε ¤

The next result is called the quantum pumping theorem [14].

Theorem 5.4. Let L ∈ Q(6) and let u, v, w ∈ 6∗. If uv 6∈ L, then there exists
k ∈ N such that uwkv 6∈ L.

Proof: Suppose thatL = L(M) for aq-automatonM = (H,6, U, s0, F). Since
‖P(F)U (uv)s0‖ < 1 there existsε > 0 such that‖P(F)U (uv)s0‖ < 1− ε. By
Corollary 5.3 there existsk ∈ N such that Eq. (5.1) holds. We then have

‖P(F)U (uwkv)s0‖ ≤ ‖P(F)U (wv)s0‖ + ‖P(F)U (uwkv)s0− P(F)U (uv)s0‖
≤ 1− ε + ‖U (uwkv)s0−U (uv)s0‖ < 1− ε + ε = 1

Hence,uwkv 6∈ L. ¤

Example 5.3. For6 = {a}, the regular language

L1 = {an ∈ 6∗ : n = 0, 2, 3,. . .} 6∈ Q(6)
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Proof: Since{a} ⊆ 6∗ is regular andR(6) is closed under complementation,
L1 = 6∗Q{a} ∈ R(6). Now suppose thatL1 ∈ Q(6). Sincea 6∈ L1, by Theo-
rem 5.4 there existsk ∈ N such thataak 6∈ L1. This is a contradiction. ¤

It follows from Example 5.3 thatR(6) 6⊆ Q(6). Also {a} ∈ Q(6) but L1 =
6∗Q{a} 6∈ Q(6) so Q(6) is not closed under complementation. Moreover,
{a2, a3} ∈ Q(6) but {a2, a3}∗ = L1 6∈ Q(6) so Q(6) is not closed under Kleene
star. Finally, we have seen in Section 4 that

L2 = {e, a2, a4, . . .} ∈ Rev(6)

so thatL2 ∈ Q(6). Now L3 = {e, a3} ∈ Q(6) but L2L3 = L1 6∈ Q(6). Hence,
Q(6) is not closed under concatenation. We summarize our findings in the fol-
lowing theorem.

Theorem 5.5. (a) F(6) ∪ Rev (6) ⊆ R(6) ∩ Q(6). (b) R(6) 6⊆ Q(6) and
Q(6) 6⊆ R(6). (c) Q(6) is closed under union, intersection and reversal but
is not closed under complementation, concatenation, or Kleene star.

For a stringw to be accepted by aq-automatonM , we must havepM (F |
w) = 1. This requirement is sometimes relaxed and we say thatw ∈ 6∗ is η-
acceptedby M , where 0≤ η < 1 if pM (F | w) > η. The set of all stringsLη(M)
that areη-accepted byM is the languageη-acceptedby M . A languageL is
η-quantum if L = Ln(M) for someq-automatonM and we denote the set ofη-
quantum languages over6 by Qη(6), 0≤ η < 1. The following result is proved
in Gudder (2000, 2000a).

Theorem 5.6. (a) Q0(6) ⊆ Qη(6) for 0≤ η < 1. (b) Qη(6) = Qη′ (6) for all
0 < η, η′ < 1.

Since the languagesQη(6) 0 < η < 1 are all the same we now have three
types of quantum languages:Q0(6), Qη(6), and Q(6). The author does not
know whether the inclusionQ0(6) ⊆ Qη(6), 0 < η < 1, is proper. It is clear that
Rev(6) is contained in all of these languages. It can be shown thatQ0(6) is closed
under union and intersection (Gudder, 2000) but we do not know whetherQη(6)
is closed under these operations for 0< η < 1. It can also be shown thatQη(6)
is not closed under complementation (Gudder, 2000) but we do not know whether
Qη(6) is closed under concatenation, Kleene star, or reversal, 0≤ η < 1. The next
theorem summarizes other known properties ofQη(6), 0 < η < 1 (Gudder, 2000).

Theorem 5.7. (a) Qη(6) ∩ F(6) = {∅}. (b) L ∈ Q(6) if and only if6∗QL ∈
Q0(6). (c) Q(6), Qη(6) and R(6) are mutually incomparable (none is contained
in any of the others).
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6. CHARACTERIZATION OF QUANTUM LANGUAGES

We have definedQ(6) to be the set of languages accepted byq-automaton
over the alphabet6. We now present an internal characterization of this class of
languages. Our result shows thatL ∈ Q(6) if and only if L admits a transition
amplitude function satisfying a certain condition.

Let S= {x1, . . . , xn} be a finite nonempty set. A mapφ : S× S→ C is
positive-definite if for everyα1, . . . , αn ∈ C we have

n∑
i , j=1

αiα
∗
j φ(xi , xj ) ≥ 0 (6.1)

and if equality holds in Eq. (6.1) thenα1 = α2 = · · · = αn = 0.

Lemma 6.1. Letφ : S× S→ C be positive-definite.(a)φ(xi , xj ) = φ(xj , xi )∗

for every i, j . (b) If

n∑
i=1

αiφ(xi , xj ) =
n∑

i=1

βiφ(xi , xj )

for every j , thenαi = βi for every i .

Proof: (a) It follows from Eq. (6.1) thatφ(xi , xi ) ≥ 0 so the result holds for
i = j . For i 6= j we prove the result forφ(x1, x2) and the other cases are similar.
Lettingα1 = α2 = 1,αi = 0, i 6= 1, 2, we have by Eq. (6.1) that

φ(x1, x1)+ φ(x2, x2)+ φ(x1, x2)+ φ(x2, x1) ≥ 0

Hence,φ(x1, x2)+ φ(x2, x1) ∈ R so that Imφ(x1, x2) = −Imφ(x2, x1). Letting
α1 = 1,α2 = i , αi = 0, i 6= 1, 2, we have by Eq. (6.1) that

φ(x1, x1)+ φ(x2, x2)− iφ(x1, x2)+ iφ(x2, x1) ≥ 0

Hence,−iφ(x1, x2)+ iφ(x2, x1) ∈ R so that Reφ(x1, x2) = Re (x2, x1) and the
result follows. (b) By assumption we have

n∑
i=1

(αi − βi )φ(xi , xj ) = 0

for every j . Hence,

n∑
i , j=1

(αi − βi )(α j − β j )
∗φ(xi , xj ) = 0

Sinceφ is positive-definite, we haveαi = βi for everyi . ¤
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We say thatφ : 6∗ ×6∗ → C is a transition amplitude on 6∗ if there
exists a finite subsetB = {x1, . . . , xn} ⊆ 6∗ with x1 = e such that the following
conditions hold.

(A1) φ : B× B→ C is positive-definite.
(A2) For everya ∈ 6, φ(xi a, xj a) = φ(xi , xj ) for everyi , j .
(A3) For everyx ∈ 6∗ there existsα1, . . . , αn ∈ C such that

φ(xa, y) =
n∑

i=1

αiφ(y, xi a)∗

for everyy ∈ 6∗ anda ∈ 6 ∪ {e}.
We say thatL ⊆ 6∗ is an amplitude languageover6 if there exists a

transition amplitudeφ on6∗ such that
(A4) If φ(w, xj ) =

∑m
i=1 αiφ(yi , xj ) for every j where y1, . . . , ym ∈ L, then

w ∈ L.

Theorem 6.2. L ∈ Q(6) if and only if L is an amplitude language over6.

Proof: Suppose thatL ∈ Q(6). ThenL = L(M) for someq-automatonM =
(H,6, U, s, F). Defineφ : 6∗ ×6∗ → C by φ(x, y) = 〈U (x)s, U (y)s〉. Let

H ′ = span{U (x)s : x ∈ 6∗}
and letU (xi )s be a basis forH ′, i = 1, . . . , n with x1 = e. DefineB = {x1, . . . ,
xn} ⊆ 6∗. To show thatφ : B× B→ C is positive-definite we have for every
α1, . . . , αn ∈ C that

n∑
i , j=1

αiα
∗
j φ(xi , xj ) =

n∑
i , j=1

αiα
∗
j 〈U (xi )s, U (xj )s〉

=
〈∑

αi U (xi )s,
∑

α j U (xj )s
〉

=
∥∥∥∑α j U (xi )s

∥∥∥2
≥ 0

Moreover, if equality holds, then
∑
αi U (xi )s= 0 and since theU (xi )sare linearly

independent, we haveα1 = · · · = αn = 0. For (A2) we have

φ(xi a, xj a) = 〈U (xi a)s, U (xj a)s〉 = 〈U (a)U (xi )s, U (a)U (xj )s〉
= 〈U (xi )s, U (xj )s〉 = φ(xi , xj )

To prove (A3), letx ∈ 6∗. SinceU (xi )s is a basis forH ′, there existα1, . . . ,
αn ∈ C such thatU (x)s=∑αi U (xi )s. Hence, for everyy ∈ 6∗, a ∈ 6 ∪ {e}
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we have

φ(xa, y) = 〈U (xa)s, U (y)s〉 =
∑

αi 〈U (a)U (xi )s, U (y)s〉
=
∑

αi 〈U (y)s, U (xi a)s〉∗ =
∑

αiφ(y, xi a)∗

To prove (A4), suppose thatφ(w, xj ) =
∑
αiφ(yi , xj ) for every j whereyi , . . . ,

ym ∈ L. We then have

〈U (w)s, U (xj )s〉 =
∑

αi 〈U (yi )s, U (xj )s〉

=
〈∑

αi U (yi )s, U (sj )s
〉

for every j . SinceU (xj )s is a basis forH ′, we conclude thatU (w)s=∑αi U (yi )s
∈ F and hencew ∈ L.

Conversely, suppose thatL is an amplitude language over6 with transition
amplitudeφ′ : 6∗ ×6∗ → C and B = {x1, . . . , xn} ⊆ 6∗. Sinceφ′ is positive-
definite, we haveφ′(e, e) > 0. Hence,φ(x, y) = φ′(x, y)/φ′(e, e) satisfies (A1)–
(A4). If x, y ∈ 6∗, then it follows from (A3) that there existα1, . . . , αn ∈ C
andβ1, . . . , βn ∈ C such thatφ(x, y) =∑αiφ(y, xi )∗ and for everyi we have
φ(y, xi ) =

∑
β jφ(xi , xj )∗. Hence,

φ(x, y) =
n∑

i , j=1

αiβ
∗
j φ(xi , xj ) (6.2)

Applying Lemma 6.1 we haveφ(y, x) =∑β jφ(x, xj )∗. Since φ(x, xj )∗ =∑
α∗i φ(xj , xi ) we conclude that

φ(y, x) =
n∑

i , j=1

β jα
∗
i φ(xj , xi ) = φ(x, y)∗

Define f : 6∗ → Cn by f (x) = (α1, . . . , αn) whereαi are the unique scalars
satisfying (A3). Forx, y ∈ 6∗ definex ∼ y if φ(x, xi ) = φ(y, xi ) for every i ∈
{1, . . . , n}. Then∼ is an equivalence relation and we denote the equivalence class
containingx by [x]. If x ∼ y and f (x) = (α1, . . . , αn), f (y) = (β1, . . . , βn) we
have by (A3) that∑

αiφ(xi , xj ) = φ(x, xj ) = φ(y, xj ) =
∑

βiφ(xi , xj )

for every j . Applying Lemma 6.1(b) we conclude thatαi = βi , i = 1, . . . , n, so
that f (x) = f (y). Conversely, iff (x) = f (y) thenx ∼ y. It follows that the func-
tion g : 6∗/ ∼→ Cn given byg([x]) = f (x) is well-defined and is injective.

Let H be the free complex linear space with generators [x], . . . , [xn]. If
g([x]) = (α1, . . . , αn) we identify [x] with

∑
αi [xi ] and write [x] =∑αi [xi ].



P1: GFU/GDX/GVG/GCY/GCO P2: LOV/FNV QC: FZN

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370719 April 9, 2002 8:54 Style file version Nov. 19th, 1999

Properties of Quantum Languages 587

If ψ =∑αi [xi ] andψ ′ =∑βi [xi ] we define

〈ψ, ψ ′〉 =
n∑

i , j=1

αiβ
∗
j φ(xi , xj )

It follows from the positive definiteness ofφ that〈ψ, ψ〉 ≥ 0 for everyψ ∈ H and
that 〈ψ, ψ〉 = 0 implies thatψ = 0. Hence,〈·, ·〉 is positive-definite. Moreover,
from Eq. (6.2) we have that〈[x], [ y]〉 = φ(x, y) for everyx, y ∈ 6∗. For anyc ∈ C
we have

〈cψ, ψ ′〉 =
∑
i , j

cαiβ
∗
j φ(xi , xj ) = c

∑
i , j

αiβ
∗
j φ(xi , xj ) = c〈ψ, ψ ′〉

In a similar way, for everyψ1, ψ2 ∈ H we have

〈ψ1+ ψ2, ψ〉 = 〈ψ1, ψ〉 + 〈ψ2, ψ〉
Finally, by Lemma 6.1 we have

〈ψ, ψ ′〉 =
(∑

i , j

β jα
∗
i φ(xj , xi )

)∗
= 〈ψ ′, ψ〉∗

so〈·, ·〉 is an inner product onH makingH a Hilbert space of dimensionn.
For a ∈ 6, defineU (a)[xi ] = [xi a] and extendU (a) to H by linearity. To

show thatU (a) is well-defined, suppose thatx ∼ y. Applying (A3) we have

φ(xa, xj ) =
∑

αiφ(xi a, xj ) = φ(yz, xj )

for every j and hencexa∼ ya. We now show thatU (a)[x] = [xa] for every
x ∈ 6∗, a ∈ 6. Applying (A3), for every j ∈ {1, . . . , n} we have

〈[xa], [xj ]〉 = φ(xa, xj ) =
∑

αiφ(xi a, xj ) =
∑

αi 〈[xi a], [xj ]〉
=
∑

αi 〈U (a)[xi ], [xj ]〉 = 〈U (a)[x], [xj ]〉
and the result follows. We also conclude thatU (y)[x] = [xy] for every y ∈ 6∗.
Now U (a) ∈ U(H ) because by (A2) we have

〈U (a)[xi ], U (a)[xj ]〉 = 〈[xi a], [xj a]〉 = φ(xi a, xj a)

= φ(xi , xj ) = 〈[xi ], [xj ]〉
It follows that〈U (a)ψ, U (a)ψ ′〉 = 〈ψ, ψ ′〉 for everyψ, ψ ′ ∈ H .

To complete the proof, we lets= [e] and F = span{[y] : y ∈ L}. To show
thatF is well-defined, suppose thaty ∈ L andx ∼ y. Then for everyj ∈ {1, . . . , n}
we haveφ(x, xj ) = φ(y, xj ) and it follows from (A4) thatx ∈ L. Since‖e‖2 =
φ(e, e) = 1, we conclude thatM = (H,6, U, s, F) is a q-automaton. Finally,
the following statements are equivalent:w ∈ L(M), U (w)s ∈ F, [w] ∈ F, [w] =∑
αi [yi ] where yi ∈ L , i = 1, . . . , m. But the last equation holds if and only if
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for every j ∈ {1, . . . , n} we have

φ(w, xj ) = 〈[w], [xj ]〉 =
∑

αi 〈[yi ], [xj ]〉 =
∑

αiφ(yi , xj )

Applying (A4), we conclude thatw ∈ L(M) if and only if w ∈ L. Hence,L =
L(M) ∈ Q(6). ¤

We can also characterizeR(6) and Rev(6) in terms of transition amplitudes.
To accomplish this, we need the following definitions. We callφ : 6∗ ×6∗ → C
aweak transition amplitude on6∗ if there exists a finite setB = {x1, . . . , xn} ⊆
6∗ with x1 = esuch that (A1) and (A3) hold. We callL ⊆ 6∗ aweak amplitude
languageover6 if there exists a weak transition amplitudeφ on6∗ such that
(A4) holds. Ifφ : 6∗ ×6∗ → {0, 1} is a (weak) transition amplitude we callφ a
0–1 (weak) transition amplitude.

Theorem 6.3. (a) L ∈ R(6) if and only if L is a weak amplitude language
over6 with a 0–1 weak transition amplitudeφ such thatφ(x, y) = 1 implies
φ(xz, yz) = 1 for every z∈ 6∗. (b) L ∈ Rev(6) if and only if L is an amplitude
language over6 with 0–1 transition amplitude.

Proof: (a) Suppose thatL ∈ R(6) andM = (S,6, δ, s, F) is a DA that accepts
L. Let S′ = {s1, . . . , sn} be the set of states inS that are reachable with strings in
6∗. Then for everysi ∈ S′ there existsxi ∈ 6∗ such thatδ(s, xi ) = si . Of course,
s ∈ S′ and we lets1 = s, x1 = e and B = {x1, . . . , xn}. Defineφ : 6∗ ×6∗ →
{0, 1} by φ(x, y) = 1 if δ(s, x) = δ(s, y) ∈ S′ and otherwiseφ(x, y) = 0. Then
δ(xi , xj ) = δi j for i , j = 1, . . . , n. To prove (A1), letα1, . . . , αn ∈ C. Then∑

i , j

αiα
∗
j φ(xi , xj ) =

∑
i , j

αiα
∗
j δi j =

∑
i

|αi |2 ≥ 0

and if equality holds, we haveα1 = · · · = αn = 0. Notice that in general (A2) need
not hold because we may haveδ(xi a, xj a) = 1 for i 6= j . To prove (A3), for every
x ∈ 6∗ there existssi ∈ S′ such thatδ(s, x) = si so thatδ(x, xi ) = 1. But then for
everyy ∈ 6∗, a ∈ 6 ∪ {e} we have

φ(xa, y) = φ(xi a, y) = φ(y, xi a)∗

To prove (A4) suppose that for everyj ∈ {1, . . . , n} we have

φ(w, xj ) =
m∑

i=1

αiφ(yi , xj ) (6.3)

where y1, . . . , ym ∈ L. Now there existsxj ∈ B such thatφ(w, xj ) = 1. Then
Eq. (6.3) implies thatφ(yi , xj ) = 1 for somei ∈ {1, 2,. . . , n}.Hence,sj ∈ F and
δ(s, w) = sj so thatw ∈ L. Finally, it is clear that ifφ(x, y) = 1 thenφ(xz, yz) = 1
for everyz ∈ 6∗.



P1: GFU/GDX/GVG/GCY/GCO P2: LOV/FNV QC: FZN

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370719 April 9, 2002 8:54 Style file version Nov. 19th, 1999

Properties of Quantum Languages 589

Conversely, suppose thatL is a weak amplitude language over6 with a 0–1
weak transition amplitudeφ such thatφ(x, y) = 1 implies thatφ(xz, yz) = 1 for
every z ∈ 6∗ and let B = {x1, . . . , xn} ⊆ 6∗ with x1 = e be the corresponding
finite set. Sinceφ(xi , xi ) > 0 we haveφ(xi , xi ) = 1 for everyi . Also, from the
proof of Theorem 6.2 we have thatφ(x, y) = φ(y, x) for everyx, y ∈ 6∗. Letting
α1 = 1,α2 = −1, we have

0 <
2∑

i , j=1

αiα
∗
j φ(xi , xj ) = φ(x1, x1)+ φ(x2, x2)− 2φ(x1, x2)

= 2[1− φ(x1, x2)]

Hence,φ(x1, x2) = 0 and in a similar way,φ(xi , xj ) = δi j for all i , j . Moreover,
sinceφ(e, e) = 1 we have

φ(x, x) = φ(ex, ey) = 1

for every x ∈ 6∗. As in the proof of Theorem 6.2, definef : 6∗ → C by
f (x) = (α1, . . . , αn) ∈ Cn when φ(x, y) =∑αiφ(xi , y) for every y ∈ 6∗. If
f (x) = (α1, . . . , αn) and f (y) = (β1, . . . , βn) by Eq. (6.2) we have

φ(x, y) =
∑
i , j

αiβ
∗
j φ(xi , xj ) =

∑
i , j

αiβ
∗
j δi j =

∑
i

αiβ
∗
i = 〈 f (x), f (y)〉

where〈·, ·〉 is the standard inner product onCn. It follows thatφ is positive semi-
definite on any finite subset of6∗. Indeed, suppose thaty1, . . . , yn ∈ 6∗ and
α1, . . . , αm ∈ C. Then∑

i , j

αiα
∗
j φ(yi , yj ) =

∑
i , j

αiα
∗
j 〈 f (yi ), f (yj )〉

=
〈∑

αi f (yi ),
∑

α j f (yj )
〉
≥ 0

For x, y ∈ 6∗ definex ∼ y if φ(x, y) = 1. Then∼ is clearly reflexive and
symmetric. To show that∼ is transitive, suppose thaty1 ∼ y2 andy2 ∼ y3. Letting
α1 = α3 = 1,α2 = −1, we have

0≤
3∑

i , j=1

αiα
∗
j φ(yi , yj ) = φ(y1, y1)+ φ(y2, y2)+ φ(y3, y3)− 2φ(y1, y2)

− 2φ(y2, y3)+ 2φ(y1, y3) = 2φ(y1, y3)− 1

Hence,φ(y1, y3) = 1 so thaty1 ∼ y3. Thus,∼ is an equivalence relation on6∗.
Sinceφ(x, y) = 1 impliesφ(xz, yz) = 1, we conclude thatx ∼ y impliesxz∼ yz
for everyz ∈ 6∗. If f (x) = (α1, . . . , αn) we have

1= φ(x, x) =
∑

αiφ(xi , x)



P1: GFU/GDX/GVG/GCY/GCO P2: LOV/FNV QC: FZN

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370719 April 9, 2002 8:54 Style file version Nov. 19th, 1999

590 Gudder and Ball

It follows thatφ(xi , x) = 1 for somei and hencex ∼ xi . From the transitivity of∼
we conclude thatx ∼ xi for a uniquei ∈ {1, . . . , n}. Thus, there are preciselyn
equivalence classes in6∗/∼. Suppose thatw ∼ y wherey ∈ L. Now there exists
a uniquexi such thaty ∼ xi . Hence,w ∼ xi and

φ(w, xi ) = φ(y, xi ) = 1

It follows from the uniqueness ofxi that

φ(w, xj ) = φ(y, xj ) = 0

for every j 6= i . Applying (A4) we have thatw ∈ L. We conclude thatL is a union
of equivalence classes in6∗/∼ and it follows from the proof of the Myhill-Nerode
theorem thatL ∈ R(6).

(b) Suppose thatL ∈ Rev(6) andM = (S,6, δ, s, F) is a reversible DA that
acceptsL. Defineφ andB as in the proof of Part (a). SinceL ∈ R(6), (A1), (A3),
(A4) hold andφ(x, y) = 1 impliesφ(xz, yz) = 1 for everyz ∈ 6∗. It now suffices
to show that (A2) holds. Ifφ(xi a, xj a) = 0 then we have thatφ(xi , xj ) = 0. If
φ(xi a, xj a) = 1 thenδ(s, xi a) = δ(s, xj a). But sinceδ(·, a) is injective, we have
thatδ(s, xi ) = δ(s, xj ). Hence,φ(xi , xj ) = 1.

Conversely, suppose thatL is an amplitude language over6 with a 0–1
transition amplitudeφ. By the proof of Theorem 6.2 we haveφ(xz, yz) = φ(x, y)
for everyx, y, z ∈ 6∗. Hence,φ(x, y) = 1 implies thatφ(xz, yz) = 1 so all the
conditions of Part (a) are satisfied. Moreover, we havexa∼ ya implies x ∼ y.
As in Part (a) it follows from the proof of the Myhill-Nerode theorem thatL ∈
Rev(6). ¤

We close with a final remark. In quantum computation, superpositions of states
are frequently important and this is one of the reasons that quantum computers
are more powerful than their classical counterparts. This leads to the question of
whether there is a concept of superposition of symbols in the alphabet6 of a
q-automatonM . More generally, we may ask about superposition of strings from
an alphabet6. Such a concept exists in a certain sense and is one of the main
ideas in the proof of Theorem 6.2. For example, the spaceH ′ at the beginning
of the proof of Theorem 6.2 can be viewed as a set of superpositions of strings
in 6∗ that are implemented by unitary operatorsU (x), x ∈ 6∗. Moreover, such
superpositions are employed in the converse proof of Theorem 6.2 to construct the
Hilbert spaceH .
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