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The class of quantum languag€g§3) over an alphabek is the class of languages
accepted by quantum automata. We study properti€¥&f) and comparé€(X) with

the class of regular languag&x). It is shown thatQ(X) is closed under union,
intersection, and reversal but is not closed under complementation, concatenation, or
Kleene star. It is also shown th@(X) and R(X) are incomparable. Finally, we prove
thatL e Q(X)ifand only if L admits a transition amplitude function satisfying a certain
property and a similar characterization is given R{&).
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1. INTRODUCTION

Although theoretical quantum computers were first studied in the 1980s
(Benioff, 1982a,b; Deutsch, 1989; Feynman, 1982, 1986), it has only been recently
that they have been considered with intense interest. One reason for this renewed
interestis that quantum algorithms have been discovered, which show that quantum
computers are capable of executing programs such as integer factorization and dis-
crete logarithms exponentially faster than classical computers (Deutsch and Jozsa,
1992; Grover, 1996; Shor, 1997; Simon, 1997; Williams, 1999). Another reason is
that prototypical quantum computers employing nuclear magnetic resonance or
nonlinear optics technologies have actually been constructed (Williams, 1999).

A fundamental, yet particularly simple, type of quantum computer is a quan-
tum automaton. Such machines have an input but no output and the languages that
they accept are called quantum languages (Gudder, 1999, 2000, 2000a; Kondacs
and Watrous, 1997; Moore and Crutchfield, in press). This paper discusses prop-
erties of quantum languages and compares them with the classical languages ac-
cepted by deterministic automata. The main classical languages are the regular
languages and their properties are well-known. As we shall see, the quantum lan-
guages share some of the properties of regular languages and do not share others.
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We denote the class of regular languages over an alphalgt R(>) and
the quantum languages I6}(X). It is well known thatR(X) is closed under the
set-theoretic operations of union, intersection, and complementation. Moreover,
R(X) is closed under the monoid operations of concatenation, Kleene star, and
reversal. The set-theoretic and monoid closure properti€g Bf) will be some of
the main concerns of this paper. There are various characterizatiét{(&pand
our other main concern will be to develop a characterizatio(@f).

For the benefit of readers who are not familiar with classical automata and
regular languages, we present a brief review in Sections 2 and 3. Section 3 also
gives a reformulation of the concept of a deterministic automaton that should aid
the understanding of the operation of a quantum automaton. Section 4 introduces
a class of languages Rew) called the reversible languages. These languages are
common toR(X) andQ(X) and they are useful for comparing their properties. The
languages Rew) are precisely those that are accepted by reversible deterministic
automata. We show that Re&xJ is closed under union, intersection, complemen-
tation, and reversal but is not closed under concatenation or Kleene star.

Section 5 first describes the operatiomediutomata and the languag@sx)
that they accept. We show th@(X) contains RevE) and the set of finite lan-
guages. It is demonstrated th@(X) is closed under union, intersection, and
reversal but is not closed under complementation, concatenation, or Kleene star.
Moreover, we show thaR(X) and Q(X) are incomparable; that is, neither is
contained in the other. Finally, we briefly mention another class of quantum lan-
guages denoted b9, (X). Although it is known thaR(X), Q(X), andQ, (X) are
mutually incomparable, most of the propertieS@f(X) are still unknown.

The paper concludes with a characterizatio@@E) in Section 6. This result
shows thal. € Q(X) if and only if L admits a transition amplitude function that
satisfies a certain condition. For comparison purposes, we also present similar
characterizations foR(X) and Revg). Some of the material of this paper is a
continuation of our work in Gudder (2000), and we refer to this work for needed
results.

2. FORMAL LANGUAGES

An alphabetis a finite nonempty set afymbols A string over an alphabet
is afinite sequence of symbols frd Instead of writing strings ag{, ay, . . ., an),
we simply juxtapose the symbaodga; - - - a,. We use the notatiopa---a = a"
when there are a’s. A string may have no symbols in which case it is émapty
string and is denoted bg. The set of all strings including over £ is denoted
by X*. ThenX* becomes a monoid in which the product is juxtaposition and the
identity ise. The length of a string is the number of symbols i and is denoted
by |w|. If w is a string, we writev(i) for the symbol in théth position fori < |w]|.
A string x is aprefix (suffix) of a stringw if w = xy (w = yx) for somey € X*.
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Any set of strings oveE, thatis any subset & *, is called danguageoverx.
For exampleX*, ¢, andX are languages ovér. Since languages over are sets,
they can be combined by the set operations of union, intersection, and difference.
We can also use the fact tHat is a monoid to define other operations on languages.
If L1, L, € Z*, theirconcatenationis the languagé = L,L, given by

L={fweX*:w=xy,xelj,yely}

TheKleene starof a languagé., denoted by *, is the set of all strings obtained
by concatenating zero or more strings fremBy convention, the concatenation
of zero strings i® and the concatenation of one string is the string itself. Thus,

L*={weXZ":wW=wWs---Wy,N>0,Wq,...,Wy € L}

For exampleX* is the Kleene star of the languag@eand@* = {e}. Notice that
if L # @, thenL* is infinite. If w = wyw, - - - wy, € X*, thereversal wR of w is

defined asvR = wj, - - - wowy. Itis clear thatvRR = w and that ky)R = yRxR for

everyw, X, y € *. Thereversal LR of a language. is defined ad.R = {wR:

w e L}.

In this paper we shall discuss the properties of various classes of languages.
For a simple example, Igt(X) be the class of all finite languages oer It is
clear that~(X) is closed under union, intersection, and difference. However, it is
not closed under complementation and=<&) is not a Boolean algebra. Itis also
evidentthaf (%) is closed under concatenation and reversal butis not closed under
Kleene star. We next discuss a less trivial and very important class of languages
called the regular languages.

Theregular languagesover X are the smallest collectidR(X) of languages
overX that contain{c} : 0 € ¥} U {#} and is closed under union, concatenation,
and Kleene star. Thu®(X) containg/ and the singleton strinds }, o € ¥; the
union, concatenation, and Kleene star of languageR(lD) are again inR(X);
andR(X) is the smallest set of languages o¥ewith these properties. In the next
section we shall see th&(X) is also closed under intersection and differences.

In particular, if L € R(Z), thenZ*\L € R(X) so R(X) is a Boolean algebra.
Moreover, in the next section we shall see tR4E) is closed under reversal and
shall give the connection between regular languages and deterministic automata.
Finally, it is clear that~(X) € R(X).

We now discuss a useful characterizatiofRE). LetL € X* be alanguage
and letx, y € ¥*. Then we writex ~_ y if for everyz € ¥* we havexz e L if
and only ifyz € L. Notice thatx~_ is an equivalence relation an*. We use k],
to denote the equivalence classxakith respect tox and write

YL ={[X]L: x € X%}

The following result is called the Myhill-Nerode theorem (Lewis and
Papadimitriou, 1998).
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Theorem 2.1. L € R(X) if and only if ©*/L is finite.

We next present a useful method for showing that a language is not regular
(Lewis and Papadimitriou, 1998).

Theorem2.2. LetL bearegularlanguage. Then there exists i such that any
string w € L with |[w| > n can be written as w= xyz such that y e, [Xy] <n
and xyz € L for everyi> 0.

This last result is calledpumping theorembecause we can pump in (insert)
y any number of times without effecting the membershipwin L. A simple
exercise employing Theorem 2.2 shows that i {a, b}andL, = {a'b' :i > 0},
thenlL; ¢ R(X). In a similar way

L, = {w € ¥* : w has an equal number ak andb's} ¢ R(X)

AlthoughLy, L, € R(X) they belong to a larger class called the context-free lan-
guages. Although we shall not discuss this class in detail, we will mention that the
context-free languages are those that can be constructed from the rules of a formal
grammar. Two examples of languages that are not context-freebyefa, b, c}
are{ab'c¢ :i > 0} and

Ls = {w € ¥* : w has the same number a$, b's, andc's}

3. CLASSICAL AUTOMATA AND LANGUAGES

We motivate the precise definition of a deterministic automaton by first de-
scribing how such devices operate. Strings are fed into the machine by means of
aninput tape which is divided into cells with one symbol in each cell. The main
part of the machine is thénite control which at a specified moment is in one
of a finite number of internadtates The finite control can sense what symbol is
written in any cell of the tape by means of a movatdading head Initially the
reading head is placed at the leftmost cell of the tape and the control is set in a
designatedhitial state. At regular intervals the automaton reads one symbol from
the input tape and then enters a new state that depends only on the current state and
the symbol just read. After reading an input symbol, the reading head moves one
cell to the right on the input tape so that on the next move it will read the symbol
in the next cell. This process is continued until the reading head reaches the end
of the input string. If the control ends up in one of a sefinél states the input
is considered to baccepted The language accepted by the machine is the set of
all strings it accepts. This is an example of a language recognizer.

We now present the precise definition.da&terministic automaton (abbre-
viated DA) is a quintupleM = (S, &, §, S, F) whereSis a finite set of states,
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¥ is an alphabetyy € Sis theinitial state, F € Sis the set ofinal states and
8 : Sx ¥ — Sis thetransition function. If M is in states € Sand the symbol
read from the input tape ia € ¥, thené(s, a) € Sis the uniquely determined
state to whichM passes. It is because of the uniquenesgofa) thatM is called
deterministic. We callg, a, s') € Sx X x Satransition if §(s,a) = s'. For ex-
ample, ifM is fed the stringaba thenM starts in statey and proceeds along the
sequence of states, (s, a), §(5(S0, @), b), §(8(8(0, &), b), a). A configuration
of M is an element 0§ x X*. A configuration §, w) represents the current state
of M and the unread pat of the string being processed cadmputation of M on
an input string is the sequence of configurations/othat represent the status of
M at successive moments. Thus, the computation for the input stibamigecomes
(S0, aba), (3(s0, @), ba), (5(5(s0, @), b), &), (5(5(5(so. @), b), @), €).

The binary relation-), holds between two configurations bf if and only
if M can pass from one to the other as a result of a single move. Thus), i
(s, w’) if and only ifw = aw’ for somea € X ands(s, a) = s'. We then say that
(s, w) yields(s', w’) in one step We denote the reflexive, transitive closure-gf
by . Then 6, w) 5, (S, w') is read §, w) yields @', w’) (after some number,
possibly zero, of steps). A strivg € X* isacceptedby M if there existsas € F
suchthatgp, w) -3, (s, €). We canextendito S x X* by definings(s,w) =s' € S
wheres' is the unique state that satisfiss\) —}, (s, €). Thenw is accepted by
M if and only if §(ss, w) € F. Thelanguage acceptedy M, denotedL (M), is
the set of all strings accepted b§. The following theorem is the most important
result in the theory of deterministic automata (Lewis and Papadimitriou, 1998).

Theorem 3.1. Alanguage L is accepted by a DA if and only if L is regular.

Theorem 3.1 is useful in many ways. For example, a simple application of
Theorem 3.1 shows th&(X) is closed under complementation and heR{E)
is a Boolean algebra. Also, Theorem 3.1 can be employed to shovR(Rgtis
closed under reversal. Applying Theorem 2.1 one can construct the minimal DA,
denoted byM_, that acceptd € R(X). The DA M_ is minimal in the sense that
M. has the least number of states. We can defineby

ML = (2L, X, 8, [e]u, {[X]L - x e L})

whered, ([X]., &) = [xa]..

Another type of classical automaton is the nondeterministic automaton (NA).
ForaNAthe next state for a given current state and input symbol may not be unique.
Although a DA is a special case of a NA, it can be shown that the set of languages
accepted by NA is still the set of regular languages (Lewis and Papadimitriou,
1998). Thus, NA are no more powerful than DA.

There is a result similar to Theorem 3.1 for context-free languages. This
theorem says thdt is context-free if and only it is accepted by a push-down
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automaton. Roughly speaking, a push-down automaton is like a NA except it
possesses an unlimited memory stack.

Itis convenient to describe the operation of a DA in terms of certain operators
on a Hilbert space. This is unnecessary for a DA but it will be essential when
we discuss quantum automata. lMt= (S, =, §, S, F) be a DA and suppose
the cardinality|S| = n. Let H be ann-dimensional complex Hilbert space and
let s — § be a bijection fromS to an orthonormal basi§ of H. We call S a
computational basisfor M and we callF = span{3: s € F} thefinal subspace
for M. Fora € X define the linear operatdd(a) : H — H by U(@)3 =1 if
5(s,a) = t and extendJ (a) to H by linearity. Relative td5, U (a) is represented
by a 0—1 matrix in which each column contains precisely one 1. Of course, there
may be more than one 1 in a row. We call such a matrix afled¢hastic matrix.

If w=aja,--- & is astring inz*, we define

Uw) =U(a)---U(a)U ()

if w # e and otherwis&J (e) = |. It is clear thatU (w) is again a 0—1 stochastic
matrix. We callU (w) the evolution operator for w because it describes the evo-
lution of M when fed the stringv. We then have thaw € L(M) if and only if
U(w)% € F. We say thatM is reversible if U(a) is invertible for everya € ¥.
Equivalently,M is reversible if and only if for evergt € X the maps(-,a): S— S

is injective (and hence, bijective). A DA is reversible precisely when it does not
dissipate heat and this is an important factor in the design of modern computers.
The proof of the following lemma is clear.

Lemma 3.2. A DA s reversible if and only if (&) is unitary for every ae X.

We now consider probabilistic automata (PA) and, as we shall see, this type

of classical automata is similar to quantum automata. A PA is a quintdpie
(S, 2,8, %0, F) whereS, X, s, F are the same asforaDAaAdSx ¥ x S—
[0, 1] is a transition probability function satisfying

Y ssat)=1 (3.1)

teS
for everys € S, a € . We interprets(s, a, t) as the probability thaM enters
statet after scannin@ in its current stats. Then Eq. (3.1) says th&d must enter
some state with probability 1. As with a DA, the actionMfcan be conveniently
described by an evolution operator. L&be a computational basis fof in the
Hilbert spaceH. Fora € X, define the linear operattf(a) on H by

U@3s=> s(s at) (3.2)
teS

and extend by linearity. Thed (a) is represented by a matrix whose entries are
in [0, 1] and whose column sums are 1. Thus, we may condida) to be a
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stochastic matrix. Fow € X* we define the operat& (w) : H — H as before
and callU (w) theevolution operator for w. Notice from Eq. (3.2) thdtl (a)Sis a
convex combination of elements &f We call such vectorprobability vectors.

It follows from the next well-known lemma that(w) is a stochastic matrix and
thus the evolution oM underw gives a Markov chain.

Lemma3.3. (a)lf Aand B are stochastic matrices, then AB is a stochastic matrix.
(b) U(w)v is a probability vector for any probability vectar.

Of course, a DA is a special case of a PA in which the transition probability
function has values 0 and 1. Now the set of stochastic matrices form a convex set
S0 in a sense we can consider the evolution operators of PA as forming a convex
set. The next result shows that the evolution operators of DA are the extreme points
of this convex set.

Lemma 3.4. If S is the set of stochastic ®» n matrices, then the set of 0-1
stochastic nx n matrices is the set of extreme pointsSof

We say that a PA iseversibleif U (a)~! exists and is a stochastic matrix for
everya € X. The next result shows that a PA is reversible if and only if it is a
reversible DA (Gudder, 2000).

Lemma 3.5. If A and B are stochastic & n matrices with AB= |, then A and
B are 0—1 unitary matrices.

Putting the previous results together, we have the following theorem.
Theorem 3.6. If M is a PA then the following statements are equivalémtM
is reversible(b) M is a reversible DA(c) The evolution operators (&) for M are

unitary.

LetM = (S, X, 8, S, F) be a PA and letv € £*. Lemma 3.3 shows that

Uw)d = thwf
teS
is a probability vector so thdt ;s A{' = 1, A} > 0. We write
p(F [w) =} !
teF

and interpretp(F | w) as the probability thaM ends up in a final state when
fed the stringw. We say thatv is accepted with probability greater than 7 if
p(F | w) > n. The setofall strings accepted bywith probability greater thanis
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then-languagefor M. It can be shown that every regular language ig-tanguage

for some PA for every & n < 1 (Paz, 1971). Moreover, there ardanguages for

0 < 5 < 1thatare notregular (Paz, 1971). This shows that PA are more powerful
than DA. However, unlike the quantum automata that will be considered next, PA
are theoretical machines that cannot be efficiently implemented in general (Dwork
and Stockmeyer, 1990).

4. REVERSIBLE LANGUAGES

A regular language oveX is reversible if for every x € * there exists a
y € ¥* such thauv € L if and only ifuxyv e L. In a certain sense any strixg
has acancelingstring y relative toL. We denote the set of reversible languages
overX by Rev().

Lemmad4.l. If # # L € Revg) then every xe X* is a prefix of a string in L.

Proof: Letz e L andlety be a canceling string forrelative toL. Thenxyze L
because e L. O

It follows from Lemma 4.1 that every nonempty € Rev(X) is infinite.
Thus,F(X) N Rev(X) = {#} and sinceF(X) € R(X) we conclude that ReX)
is properly contained ifR(X). We now prove a result analogous to Theorem 3.1
which says that a languadeis accepted by a reversible DA if and onlylife

Rev(®).

Lemma 4.2. (a)If L is accepted by a reversible DA then for anyeax there
exists rfa) € N such that for every xy € ©*, xa"®@y e L if and only if xye L.
(b) If L is accepted by a reversible DA then for everyyxz € X*, xz~ yz
implies that x~| y.(c)If L € R(X) then L is accepted by a reversible DA if and
only if M is reversible.

Proof: (a) LetM = (S, X, 8, o, F) be a reversible DA accepting. Since for
fixed a € &, the maps — §(s, @) is a bijection onS, it has finite order in the
permutation group o%. Letn(a) be the order of this permutation. Then

8(s0, xa"@y) = §(so, xy)

for everyx, y € X* so the result follows. (b) It is enough to show that~ ya
implies thatx ~_ y for everya € ¥ andx, y € *. Assume thaka ~_ ya and
thatz € ©*. By Part (a) we havexz e L if and only if xaa"®-'z € L. Since
xa = ya, the latter condition is equivalent ygaa"®-1z e L which by Part (a)
is equivalent toyz € L Hence x =~ y. (c) If M is reversible, then clearli is
acepted by a reversible DA. Conversely, supdoseaccepted by a reversible DA.
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To show thatM_ is reversible suppose that ([x]., a) = §.([y]., a) for some
X,y € X* ae X. But then ka],_ = [ya]. so thatxa ~_ ya. Applying Part (b)
we havex =~ yand hence ], =[y]L.. O

Theorem 4.3. If L € R(X), then the following statements are equivalent.

(a) L is accepted by a reversible DA.

(b) M_ isreversible.

(c) For every ac X there exists (a) € N such that for every xy € %,
xa"@y e L if and only if xye L.

(d) Forevery xy,ze X* xz~_ yz implies that x| v.

(e) L € Rev(x).

Proof: That (a)—(d) are equivalent follows from Lemma 4.2 and its proof. Now
(c) implies (e) because ¥ = a;a, - - - a then we can take a canceling string for
relative toL to be

y = aE(a«)—l . ag(az)_la;:'(al)_l

We now show that (e) implies (d). Suppose that Rev(X) and thatxz~ yzfor
somex, Yy, z € £*. Letv be a canceling string farrelative toL. Sincexz~ yz
we havexzvwe L if and only if yzvwe L for everyw € £*. It follows that
xw € L ifand only if yw € L for everyw € £*. Hencex ~ y. O

Since Revk) is properly contained ifR(X), we conclude from Theorem 4.3
that DA are more powerful than reversible DA. For examplé] i L € F(X),
thenL is accepted by a DA but not by a reversible DA.

Corollary 4.4. (a)lf L € Rev(x), then LR € Rev(Z). (b) If # # L € Rev(Z),
then every xe X* is a suffix of a string in L.

Proof: (a) If L € Rev(Z), thenL € R(X) soLR € R(X). Fora € X there ex-
istsn(a) e N satisfying Theorem 4.3(c). Nowy € LR if and only if yRxR e L.
By Theorem 4.3(c) this latter condition is equivalenty®a"®@xR e L which is
equivalent toxa"®y e LR, The result follows from Theorem 4.3(c). (b) Since
LR € Rev(Z), by Lemma 4.1 there existse X* such thatxRy e LR. But then
yRxeL. O

Corollary 4.4 shows that ReX( is closed under reversal. It is shown in
Gudder (2000) that ReX) is closed under union, intersection, and complemen-
tation. We now investigate whether R&)(is closed under concatenation and
Kleene star.
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Example 4.1. Let ¥ = {a, b} and letL; € ¥* be the language given by

L1 ={w € £* : w has an odd number afs}

We will now show that_; € Rev(X). We accomplish this by producing a re-
versible DAM; that accepts ;. This DA is given byM; = (S, X, §, S, F) where
S={s, a1}, F ={s1} and §(so, @) = 1, (S0, b) = 0, 8(S1, @) = S0, 8(S1, b) =
s1. Another way to show thdt; € Rev(X)isto employ Theorem 4.3(c). Firdt; €
R(X) becausd ; = b*ab*(b*ab*ab*)*. Letn(a) = 2,n(b) = 1. Sincexa’y € L
if and only if xye L and xbye L if and only if xy € L we conclude that
L; € Rev(x).

An argument similar to that in Example 4.1 shows thate Rev(X) where

L, ={we X*: |w|to even
In this casen(a) = n(b) = 2. Similarly, L3 € Rev(X) where
L3z = {w € ¥* : w has an even number afs}
The next result shows that, in general, Rey(s not closed under concatenation

and Kleene star.

Theorem 4.5. If L, is the language of Example 4.1, then
(@) LiL: ¢ Rev(E®), (b)L] ¢ Rev(X).

Proof: (a) Suppose thdt;L; € Rev(X). Applying Theorem 4.3(c), there exists
n(@) € N such thaka"®y e L,Lq ifand only ifxy € L1L1. Nowaa e L;L1 so
aa"®a e L1L;. Now n(a) must be even becaus&"®a must contain an even
number ofa’s. But thenba"®b e L;L; sothatob € L;L; and this is a contradic-
tion. (b) It is easy to check that

LI ={weX":w=-eorw() =aforsome € N}
= {e}uU X*ax”*

Supposé.; € Rev(Z). Sinceba™®b e L%, by Theorem 4.3(c) we havsb € L.
But this is a contradiction. O

5. QUANTUM LANGUAGES

In the sequelH will denote a finite-dimensional complex Hilbert space
with unit sphereH. We denote the set of unitary operators Enby Z/(H).
A g-automaton is a quintupleM = (H, £, U, s, F) where X is an alphabet,
U:Y¥—>UH), e H, andF is a subspace dfl. We extendJ to a map from
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>* intoU(H) as follows. Ifw = a;a; - - - a5 € X* we define
UWw) =U(an)---U(@)U(a)

andU (e) = | . Of course, this makes sense because the product of unitary operators
iS unitary.
We interpretl:| as the state space ftt, s, € H is thestart state (or initial
state) of M andF is thefinal subspacefor M. We callU (w) theevolution opera-
tor of M forw € X* and interpret (w)s, as the state in whicM finds itself after
being fed the string/. Theprobability that M reachess € H whenfedw € =*is

pm(s | W) = [(U(W)so, s)I?
Denoting the orthogonal projection onte by P(F) the probability that M
reachesthe final subspacE when fedw € * is given by
pm(F | W) = [ P(FUW)soll?
We say thatv € X* is acceptedby M if py(F | w) = 1 and define
L(M)={w e X*: pu(F | w) =1}

Alanguagd. is aquantum languageif L = L(M) for someg-automatorM. We
denote the set of all guantum languages &vdry Q(X).

It is shown in Gudder (2000) that If1, L, € Q(X), thenL, U L, € Q(X)
andL;N L, e Q(X) so thatQ(X) is closed under union and intersection. The
next result shows tha®(X) is closed under reversal.

Theorem 5.1. If L € Q(X), then LR € Q().

Proof: LetL = L(M)forag-automatorM = (H, X, U, s, F) whereF # {0}.
LetdimF = nand letP be the set of all projections dn of dimensiom. Let H’

be the set of all complex linear combinations of elemenf8.ofhenH’ is a finite-
dimensional linear space becauseis a subspace of the finite-dimensional linear
space of all operators dr. Define an inner product od’ by (A, B); = tr(AB").
For everya € X defineU’(a) : H — H’byU’(a)A = U(a)*AU(a). ThenU’(a)

is unitary because

IU'(@)A||? = tr(U (a)* AU(a)U (a)* A*U (a)) = tr(U (a)*AA U (a))
= tr(AA") = | AllZ

We extendU’ to a map fromZ* into Z/(H’) as before. Note thatl’'(WR)A =
U(w)*AU(w). Indeed, ifw = a;a, - - - ax we have

U'(WR)A=U'(an)---U'(a) A=U(ar)* - U(a)*AU(a) - - - U(a1)
= U (w)*AU(w)
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Form theg-automatorM’ = (H’, £, U’, s, F’) wheres, = P(F)/{/n and
F'=spafP € P: Pg = s}
Suppose thaw € L. We then haveP?(F)U (w)sp = U (w)so. Now

U'WR)S) = %U(w>*P<F)U(w)

and U(w)*P(F)U(w) € P with U(w)*P(F)U(W)so = S. Hence,U'(WR)g) €
F’ so thatwR € L(M’). Conversely, suppose that e L(M’). ThenU’(w)s) =
1//nP whereP € P with P = s. Since

VU (W) = UWR)P(F)U W)
we have
UWR)*P(FUWR)s = o
Hence,P(F)U (WR)sy = U(wR)sysothatwR e L. Thusw = (WR)RwherewR ¢

L sothatL(M) =LR. 0O

We now compareg(X) with the classical languagd?(X) and Revg) C
R(X). First, if L € Rev(X) then by Theorem 4.3, is accepted by a reversible DA
M. By Lemma 3.2 the corresponding operatdi&) are unitary for evera € X.

It follows that M can be considered to begaautomaton whose final subspace
is the span ofF. Hence,L € Q(X) and we conclude that Rex{ € Q(X). To
compareQ(X) and R(X), we first give some examples of quantum languages.
Our initial example shows that singleton strings are quantum languages.

Example 5.1. If ¥ ={ay, ..., an}, then{g} € Q(X),i =1,...,n.

Proof: Form theg-automatorM = (H, £, U, s, F) with H = C*
so=0n)Y1,1,...,1)
s1 = U(ay)so, F = sparis;}, 6 = v/2r and

cosy —sing 0 - 0
sinf cos® O - 0
U@)=| © 0 1.0
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1 0 0. 0
01 0 - 0
U(an) = :
0 O 0 --- cos® —sing
0 O O --- sind cosH
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It is easy to check thdt (M) = {a;} so that{a;} € Q(X). A similar construction

shows thafa;} € Q(X),i =1,...,n.

O

If we takeF = sparisy} in Example 5.1, we conclude thgd} € Q(X). The

next example shows that a string of length two is a quantum language.

Example 5.2. If ¥ = {a, b}, then{ab} € Q(X).

Proof:

(1,0, 0),s1 = U(b)U(a)s, F = sparisi}, § = /27 and

[cos® —sing O]
U@ = |[sind coss 0
| 0 0 1]
[cos® 0 —sind’]|
Uby=| 0 1 0
_sine 0 co¥ |

Form the g-automaton M = (H, £, U, s, F) with H =C3, g =

It is easy to check thdt(M) = {ab}. O

A straightforward extension of Example 5.2 shows that any string is a quantum
language. Sinc€(X) is closed under union, we conclude thgt2) € Q(X). It
is shown in Gudder (2000) that the nonregular langudgesndL 3 of Section 2
are quantum languages so titx) Z R(X).

The proof of the following lemma appears in Moore and Crutchfield (in press).
We now give a different proof.

Lemma 5.2. IfU e ¢(H) ande > O then there exists k N such that||U* —
I < e.

Proof: Since H is finite dimensional, the unit sphe®(H)" in the set of
(bounded) operatorB(H) on H is compact andU! : j € N} € B(H)". Hence,
there exists a subsequendé’ that converges irB(H)". SinceU!" is Cauchy,
there existj, k € N, j # k such thatjU’ — U¥| < ¢. Now for everyU e U/(H)
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we have||U A|| = || A|| for every A € B(H). Indeed,

IUA| = sup IUAY| = sup<UAw U Ay) 2
lll= [l ll=

= thjp(Aw Ay)H? = ‘sup Ay = [ Al

Thus, if j < k we have
JURT =1 = Ui =) = Uk - Ul < e .

Corollary5.3. LetM = (H, X, U, 5, F) be a g-automaton. For any> 0and
w € X* there exists ke N such that

U (uwkv) — U (uv)|| < & (5.1)

foreveryyv e =*.

Proof: Applying Lemma 5.2 there exists € N such that||U (W)X — ||| < e.
Hence,

IU (uw*v) — U uv)]| = U ()U W) U (u) — U()U ()|
= [UW)[UW)* — 1TU ()]
<JUWl—Tf<e O

The next result is called the quantum pumping theorem [14].

Theorem 5.4. LetL e Q(X)and letuyv,w e £*. If uv ¢ L, then there exists
k € N such that udiv ¢ L.

Proof: Suppose thdt = L(M) forag-automatorM = (H, X, U, 5, F). Since
IP(F)U(uv)sll < 1 there existg > 0 such that| P(F)U (uv)s| < 1 —¢. By
Corollary 5.3 there exists € N such that Eq. (5.1) holds. We then have

IP(F)U(uw v)so|l < [P(F)U WV)soll + [| P(F)U (uw v)so — P(F)U (uv)sol|
<l—e+ UUWV)H—UUV)s<l—eg4+e=1
Henceuw‘v ¢ L. O
Example 5.3. For ¥ = {a}, the regular language

Li={@"e€e2*:n=0,2,3,..}¢Q(X)
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Proof: Since{a} C * is regular andR(X) is closed under complementation,
L1 = ¥*{a} € R(X). Now suppose that; € Q(X). Sincea ¢ L;, by Theo-
rem 5.4 there existis € N such thatiak ¢ L. This is a contradiction. O

It follows from Example 5.3 thaR(X) € Q(X). Also{a} € Q(X) butL; =
¥5{a} € Q(X) so Q(X) is not closed under complementation. Moreover,
{a?,a%) € Q(X) but{a?, a%}* = L; ¢ Q(X) soQ(X) is not closed under Kleene
star. Finally, we have seen in Section 4 that

L, ={e a% a% ...} e Rev(x)

so thatL, € Q(X). Now L3 = {e,a%} € Q(Z) but LoL3 = L1 ¢ Q(X). Hence,
Q(X) is not closed under concatenation. We summarize our findings in the fol-
lowing theorem.

Theorem 5.5. (a) F(Z)URev(EZ) C R(Z)N Q(X). (b) R(Z) £ Q(X) and
Q(Z) € R(X). (c) Q(X) is closed under union, intersection and reversal but
is not closed under complementation, concatenation, or Kleene star.

For a stringw to be accepted by @-automatonM, we must havepy (F |
w) = 1. This requirement is sometimes relaxed and we sayvhatX* is -
acceptedoy M, where 0< n < 1if pu(F | w) > 7. The set of all strings.,,(M)
that aren-accepted byM is thelanguagen-acceptedby M. A languageL is
n-quantum if L = L,(M) for someg-automatonM and we denote the set gf
guantum languages ov& by Q,(X), 0 < < 1. The following result is proved
in Gudder (2000, 2000a).

Theorem 5.6. (a) Qo(X) € Q,(X)for0 <7 < 1. (b) Q,(X) = Q,(X) for all
O<nn<Ll

Since the language®,(X) 0< n < 1 are all the same we now have three
types of quantum languageQo(X), Q,(X), and Q(X). The author does not
know whether the inclusio@y(X) € Q,(X), 0< 5 < 1, is proper. Itis clear that
Rev(X) is contained in all of these languages. It can be showrnQ@péx) is closed
under union and intersection (Gudder, 2000) but we do not know whethez)
is closed under these operations fox &; < 1. It can also be shown th&, (%)
is not closed under complementation (Gudder, 2000) but we do not know whether
Q, (%) is closed under concatenation, Kleene star, or reversalyG 1. The next
theorem summarizes other known propertieQgfx), 0 < n < 1(Gudder, 2000).

Theorem 5.7. (a) Q,(X) N F(X) ={#}. (b) L € Q(X) if and only if Z*\L €
Qo(X). (c) Q(%), Q,(X) and RX) are mutually incomparable (none is contained
in any of the others).
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6. CHARACTERIZATION OF QUANTUM LANGUAGES

We have define@)(X) to be the set of languages acceptedjbgutomaton
over the alphabeE. We now present an internal characterization of this class of
languages. Our result shows tHaie Q(X) if and only if L admits a transition
amplitude function satisfying a certain condition.

Let S={Xs,..., X} be a finite nonempty set. A map: Sx S— C is
positive-definiteif for everyay, .. ., an € Cwe have

n
> aiafe(xi, X)) = 0 (6.1)
ij=1
and if equality holds in Eq. (6.1) then =y =--- = an = 0.

Lemma6.1. Let¢ : Sx S— C be positive-definitga) ¢(x;, X;) = ¢(Xj, Xi)*
foreveryi j. (b) If

n n
D g0, X)) =Y fid(%, X))
i=1 i=1
for every j, theny; = g; for everyi.

Proof: (@) It follows from Eq. (6.1) that(x;, X;) > 0 so the result holds for
i = j.Fori # j we prove the result fop(x1, X2) and the other cases are similar.
Lettinga; = a2 = 1, = 0,1 # 1, 2, we have by Eq. (6.1) that

(X1, X1) + d(X2, X2) + d(X1, X2) + p(X2, X1) > 0

Hence,$ (X1, X2) + ¢(X2, X1) € R so that Imp(Xq, x2) = —Im ¢(x2, X1). Letting
a1 =102 =1i,0i =0,i #1, 2, we have by Eq. (6.1) that

(X1, X1) + p(X2, X2) — i d(X1, X2) +1p(X2, X1) = 0

Hence,—i¢(x1, X2) + i (X2, X1) € R so that Rep(x1, X2) = Re (x2, X1) and the
result follows. (b) By assumption we have

Z(Oti — Bi)p(Xi, Xj) =0
i=1
for every . Hence,
D (e = Bt = Bi) ¢, x3) = O
ihj=1

Sinceg is positive-definite, we hawe, = g; for everyi. O
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We say thatp : ©* x X* — C is atransition amplitude on X* if there
exists a finite subsé® = {xy, ..., Xn} € X* with X; = e such that the following
conditions hold.

(A1) ¢ : B x B — Cis positive-definite.
(A2) Foreverya e X, ¢(xia, x;a) = ¢(xi, X;) for everyi, j.
(A3) For everyx € ©* there exists, .. ., ay € C such that

¢(xa y) =) aig(y, xa)"
=i

for everyy € ¥* anda € £ U {e}.
We say thatL C X* is anamplitude languageover X if there exists a
transition amplitude> on =* such that
(Ad) If p(w, x;) =", cip(yi, xj) for every j whereyy, ..., ym € L, then
welL.

Theorem 6.2. L € Q(X) if and only if L is an amplitude language ovEr.

Proof: Suppose that € Q(X). ThenL = L(M) for someg-automatonM =
(H, %,U, s, F). Defineg : T* x * — Chy¢(x, y) = (U(X)s, U(y)s). Let
H' = sparfU(x)s: x € %}

and letU (xj)s be a basis foH’,i = 1,..., nwith x; = e. DefineB = {xy, ...,
Xn} € X*. To show thatp : B x B — C is positive-definite we have for every
a1, ...,0n € Cthat

> aiao(h, X)) = Y e (U(x)s, U(x;)s)
=1 =1

- <Zaiu(xi)s, ZOljU(Xj)S>
_ HZO{I-U(X;)SHZZO

Moreover, if equality holds, thel’ «; U (x;)s = 0 and since th¥ (x; )s are linearly
independent, we have = --- = a, = 0. For (A2) we have

o(xia, xja) = (U(xa)s, U(xja)s) = (U (@)U (x)s, U(@U(x;)s)
= (U(xi)s, U(Xj)s) = ¢(xi, X))

To prove (A3), letx € X*. SinceU(x)s is a basis forH’, there existyy, .. .,
an € C such thatU (x)s = > U (x)s. Hence, for everyy € *,a€ X U {e}
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we have
¢(xa y) = (U(xa)s, U(y)s) = Y ai(U(@U)s, U(y)s)
=Y a(Uy)s Uxa)s) =) aig(y, xa)"

To prove (A4), suppose thatw, x;) = > ai¢(¥i, X;) for every j wherey;, .. .,
Ym € L. We then have

(UW)s, U(x))s) = > ai (U()s, U(x))s)
= <Z aU(y)s, U(sj)S>

foreveryj. SinceU (x;j)sis a basis foH’, we conclude that (w)s = )" o; U (yi)s
€ F and hencav € L.

Conversely, suppose thhatis an amplitude language ov&rwith transition
amplitude¢’ : ¥* x ¥* - C andB = {Xy, ..., Xy} C X*. Since¢’ is positive-
definite, we have'(e, €) > 0. Hencegp(Xx, y) = ¢'(X, y)/¢'(e, €) satisfies (Al)—
(A4). If x,y e x*, then it follows from (A3) that there exists,...,an € C
andpi, ..., Bn € C such thatp(x, y) = > aid(y, Xi)* and for everyi we have
By, %) = >_ Bjo(xi, xj)*. Hence,

n

d(X,y) = Z i Bi (X, Xj) (6.2)

ij=1

Applying Lemma 6.1 we havep(y, x) = Y Bjo(X, Xj)*. Since ¢(x, X;)* =
Yo' ¢(X;, Xi) we conclude that

¢y, X) = Y Bjaid(xj, %) = (X, y)*

hj=1

Define f : ¥* — C" by f(X) = (a1, ..., an) Whereo; are the unigue scalars
satisfying (A3). Forx, y € T* definex ~ y if ¢(x, %) = ¢(y, X;) for everyi €
{1,...,n}. Then~ is an equivalence relation and we denote the equivalence class
containingx by [x]. If x ~y and f(X) = (a1, ..., o), f(Y) =(B1, ..., Bn) We

have by (A3) that

D aid(i, X)) = d(X, X)) = d(y, Xj) = D _ Bi(xi, X;)

for every j. Applying Lemma 6.1(b) we conclude that= 5;,i = 1,...,n, so
that f (x) = f(y). Conversely, iff (x) = f(y) thenx ~ y. It follows that the func-
tiong: =*/ ~— C" given byg([x]) = f(x) is well-defined and is injective.
Let H be the free complex linear space with generatods.[. ., [X,]. If
o([x]) = (aa, ..., an) we identify [x] with Y o;[x] and write k] = > o [%].
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If v => ai[x]andy’ =Y Bi[x] we define

Wy = aiBfe(x, X))
ij=1
It follows from the positive definiteness a@fthat(y, 1) > 0 for everyyr € H and
that (v, ¥) = 0 implies thatyy = 0. Hence,(, -) is positive-definite. Moreover,
from Eq. (6.2) we have thafx], [y]) = ¢(X, y) foreveryx, y € *. Foranyc € C
we have

(cy, ¥') =) caifip(xi, X)) =C Y aifip(x, X)) = cy, )
i i

In a similar way, for everyy1, ¥» € H we have

(U142, ¥) = (Y1, ¥) + (Y2, ¥)
Finally, by Lemma 6.1 we have

(W, ¥') = (Zﬂjarcﬁ(xj.xi)) =, ¥
i

so{-, -y is an inner product ol makingH a Hilbert space of dimensiam
Fora e X, defineU (a)[x] = [xa] and extendJ (a) to H by linearity. To
show thatJ (a) is well-defined, suppose that~ y. Applying (A3) we have

p(xa,xj) =) aid(xia, X)) = p(yz X;)

for every j and hencexa ~ ya. We now show that) (a)[x] = [xa] for every
X € ¥*, a e X. Applying (A3), for everyj € {1,..., n} we have

([xa], [x]) = p(xa x;)) = Y eig(xia, x;) = > ai{[xal, [x])
=Y @U@ [x]) = U@, [x])

and the result follows. We also conclude thity)[x] = [xy] for everyy € X*,
Now U (a) € U(H) because by (A2) we have

(U@Ix1, U@Ix;]) = ([xal, [xja]) = ¢(xia, x;a)
= ¢(xi, X)) = ([x], [x;])

It follows that(U (a)y, U(a)y') = (v, ¥') for everyy, ' € H.

To complete the proof, we let=[€] and F = spari[y] : y € L}. To show
thatF iswell-defined, supposethate L andx ~ y. Thenforevenj € {1,..., n}
we haveg(x, xj) = ¢(y, x;) and it follows from (A4) thatx € L. Since|le|? =
¢(e, €) =1, we conclude thaM = (H, X, U, s, F) is a g-automaton. Finally,
the following statements are equivalewte L(M), U(W)s € F, [w] € F, [w] =
> ailyi] wherey, e L,i =1,..., m. But the last equation holds if and only if
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foreveryj € {1,..., n} we have

oW, x;) = (W], 1) = > eidlyil, 1) = D (¥, X))
Applying (A4), we conclude thatv € L(M) if and only if w € L. Hence,L =
L(M)e Q(X). O

We can also characteri®(X) and Revg) in terms of transition amplitudes.
To accomplish this, we need the following definitions. We gallz* x £* — C
aweak transition amplitude on X* if there exists a finite s = {Xq, ..., Xn} C
¥* with x; = esuch that (A1) and (A3) hold. We cdll € =* aweak amplitude
languageover X if there exists a weak transition amplitugeon X* such that
(A4) holds. If¢ : =* x ¥* — {0, 1} is a (weak) transition amplitude we cdila
0-1 (weak) transition amplitude.

Theorem 6.3. (a) L € R(X) if and only if L is a weak amplitude language
over ¥ with a 0—1 weak transition amplitud¢ such that¢(x, y) = 1 implies
¢(xz, yz) = 1for every ze ¥*. (b) L € Rev(x) if and only if L is an amplitude
language ove with 0-1 transition amplitude.

Proof: (a) Suppose thdt € R(Z) andM = (S, &, é, s, F) is a DA that accepts
L.LetS ={si,..., S} be the set of states iBthat are reachable with strings in
>*. Then for everys € S there existx; € X* such tha#(s, x;) = 5. Of course,
seSandwelets; =s,xy =eandB = {Xq, ..., Xn}. Define¢g : X* x T* —
{0, 8 by ¢(x,y) =1 if 8(s,X) =3(s, ¥) € S and otherwises(x, y) = 0. Then
8(xi, x;) = ¢&;j fori, j =1,...,n. To prove (Al), letry, ..., on € C. Then

Zaia}%(xi, Xj) = Zaia}‘&j = Z|0li|2 >0
i i i

and if equality holds, we havg = - - - = oy = 0. Notice that in general (A2) need
not hold because we may has{e; a, xja) = 1 fori # j. To prove (A3), for every
X € X* there exists € S such tha$(s, x) = § so thats(x, x;) = 1. But then for
everyy € ¥* a € ¥ U {e} we have

d(xa y) = p(xia, y) = ¢(y, xia)"
To prove (A4) suppose that for evejye {1, ..., n} we have

m
dW, X)) =Y (¥, X)) (6.3)
i=1
whereys, ..., Ym € L. Now there existx; € B such thatg(w, x;) = 1. Then

Eq. (6.3) implies thap(y;, x;) = 1forsome € {1, 2,..., n}. Hences; € F and
5(s, w) = sj sothaw e L.Finally, itisclearthatitp(x, y) = 1thenp(xz, yz) = 1
for everyz € *.



Properties of Quantum Languages 589

Conversely, suppose thatis a weak amplitude language ov@mwith a 0-1
weak transition amplitude such that(x, y) = 1 implies thatp(xz y2z) = 1 for
everyze X* and letB = {xq, ..., Xp} € T* with x; = e be the corresponding
finite set. Sincep(x;, X)) > 0 we havep(x;, x;) = 1 for everyi. Also, from the
proof of Theorem 6.2 we have thafx, y) = ¢(y, x) for everyx, y € T*. Letting
a1 =1, = —1, we have

2
0< > (X, X)) = p(xa, X1) + p(Xa, X2) — 26(X4, X2)
i,j=1

= 2[1 — ¢(X1, X2)]

Hence,¢(x1, X2) = 0 and in a similar wayp(x;, x;) = &; for all i, j. Moreover,
sinceg(e, €) = 1 we have

d(x, X) = p(ex ey) =1

for every x € X*. As in the proof of Theorem 6.2, definé: ** — C by
f(X) = (a1, ...,an) € C" when ¢(x, y) = > ai¢p(x, y) for everyy € =*. If
f(X) = (a1, ...,an)and f(y) = (B1, ..., Bn) by Eq. (6.2) we have

P, Y) =D aifip(x. X)) =Y afis =Y aip =(f(x), f(y)
i,] i,j i

where(., -) is the standard inner product @H. It follows that¢ is positive semi-
definite on any finite subset d&*. Indeed, suppose that, ..., y, € X* and
a1, ...,am € C. Then

Zaia]k‘f’()ﬁ’ yi) = Zaia}‘<f(yi)- f(y;)
i i

= (Y et Y e fy) =0

Forx, y € X* definex ~ y if ¢(x,y) = 1. Then~ is clearly reflexive and
symmetric. To show that is transitive, suppose thgt ~ y, andy, ~ ys. Letting
o1 =az3=1,a, = —1, we have

3
0< > aiap(¥i, ¥j) = (Y1, V) + B(¥2, Y2) + ¢(¥a, ¥3) — 26(Y1, ¥2)

ij=1
—2¢(Y2, ¥3) + 2¢(y1, Y3) = 2¢(y1, y3) — 1

Hence,¢(y1, y3) = 1 so thaty; ~ ys. Thus,~ is an equivalence relation an*.
Sincep(x, y) = limpliesp(xz y2) = 1, we conclude that ~ yimpliesxz ~ yz
foreveryz € T*. If f(X) = (o, ..., @n) we have

T=¢(x%) =Y aip(X,X)
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It follows thatg(x;, X) = 1 for somd and henc& ~ X;. From the transitivity of-
we conclude thax ~ x; for a uniquei € {1, ..., n}. Thus, there are precisety
equivalence classes ¥/ ~. Suppose that ~ y wherey € L. Now there exists
a uniquex; such thaty ~ x;. Hencew ~ x; and

d)(W, Xi) = ¢>(y, Xi) =1

It follows from the uniqueness of that

(W, Xj) = (Y, xj) =0

for everyj # i. Applying (A4) we have thatv € L. We conclude thakt is a union
of equivalence classes ¥/ ~ and it follows from the proof of the Myhill-Nerode
theorem that € R(X).

(b) Suppose thdt € Rev(X)andM = (S, %, §, s, F) is areversible DA that
acceptd . Defineg andB as in the proof of Part (a). Sindee R(X), (A1), (A3),
(A4) hold andp(x, y) = 1 implies¢(xz yz) = 1 foreveryz € T*. It now suffices
to show that (A2) holds. I§(xia, x;a) = 0 then we have thap(x;, x;) = 0. If
d(xia, xja) = 1 thens(s, x;a) = &(s, xja). But sinces(-, a) is injective, we have
thats(s, x) = 8(s, xj). Henceg(xi, x;) = 1.

Conversely, suppose that is an amplitude language ovér with a 0-1
transition amplitude. By the proof of Theorem 6.2 we hagé€xz, yz) = ¢(X, y)
for everyXx, y, z € £*. Henceg(x, y) = 1 implies thatp(xz y2) = 1 so all the
conditions of Part (a) are satisfied. Moreover, we hage~ ya impliesx ~ .
As in Part (a) it follows from the proof of the Myhill-Nerode theorem that
Rev(®). O

We close with afinal remark. In quantum computation, superpositions of states
are frequently important and this is one of the reasons that quantum computers
are more powerful than their classical counterparts. This leads to the question of
whether there is a concept of superposition of symbols in the alphalmdta
g-automatorM. More generally, we may ask about superposition of strings from
an alphabe®. Such a concept exists in a certain sense and is one of the main
ideas in the proof of Theorem 6.2. For example, the spgédcat the beginning
of the proof of Theorem 6.2 can be viewed as a set of superpositions of strings
in X* that are implemented by unitary operattf6x), x € £*. Moreover, such
superpositions are employed in the converse proof of Theorem 6.2 to construct the
Hilbert spaceH.
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